SURFACE MOUNT MONOLITHIC CHIP CAPACITORS SELECTION GUIDE

	Series Dimensions			Capacitance Range (F)								Dogo	
	Series	(mm)	0.1p	1p	10p	100p	1000p 0.01	ι 0.1μ	1μ 1	0μ 10)0µ	Page	
Ultra- miniaturized	GRM33	0.6 x 0.3		1pF			1000pF					30	
	GRM36	1.0 x 0.5	0.5pF						1μF			7 0 11 12 15	
For	GRM39	1.6 x 0.8	0.5pF						1μF			7 - 9, 11, 13 - 15	
General	GRM40	2.0 x 1.25	0.5pF						2μF			7 - 9, 12 - 15	
Electronics	GRM42-6	3.2 x 1.6				2	700pF			10µF		7-9, 12-14, 16, 26-28	
Equipment	GRM42-2	3.2 x 2.5					6800pF			10µF			
	GRM43-2	4.5 x 3.2					8200pF		1.5μF			7-8, 10, 13-14, 16, 26-28	
	GRM44-1	5.7 x 5.0					0.012µF		4.	7μF			
	GRM43-2	4.5 x 3.2						.33µF	.47μF				
Tip	GRM43-4	4.6 x 6.4						.47pF	1μF			04.05	
& Ring	GRM44-1	5.7 x 5.0						.47pF	1μF			24 - 25	
,9	GRM44	5.6 x 6.4						.47pF	1μF				
	GRM420	1.6 x 0.8				100	0.0	01µF					
Low	GRM425	2.0 x 1.25				100	0pF	0.033µF				40.00	
Distortion Series	GRM430	3.2 x 1.6					0.018µF	0.1µ	۱F			19 - 23	
001100	GRM435	3.2 x 2.5						0.1µ	۱F				
	GRM220	1.6 x 0.8							1μF				
Smoothing Series	GRM225	2.0 x 1.25								10µF			
	GRM230	3.2 x 1.6							4.7μF	10µF		17 - 18	
	GRM235	3.2 x 2.5							1μF		47μ	F	
	GHM1030	3.2 x 1.6		1	0pF		1000pF						
	GHM1035	3.2 x 2.5			27pF	82pF							
	GHM1038	4.5 x 2.0		1	0pF	82pF							
High-	GHM1040	4.5 x 3.2			1	00pF 2	20pF						
Voltage	GHM1525	2.0 x 1.25				100	0pF 0.	01µF				44 - 47	
Туре	GHM1530	3.2 x 1.6				100	0pF	0.047μF					
	GHM1535	3.2 x 2.5					0.015µF	0.1					
	GHM1540	4.5 x 3.2					0.033µF		22µF				
	GHM1545	5.7 x 5.0						.15µF	0.47μF				
	GHM2143	5.7 x 2.8						0.047μF					
AC250V	GHM2145	5.7 x 5.0						0.1					
Туре	GHM2243	5.7 x 2.8				470pF	4700p					48 - 51	
Safety Std.	GHM3045	5.7 x 5.0			1(DOpF	4700p					1	
Recognition	GHM3145	5.7 x 5.0					0.01µF						
Array	GNM30-401	3.2 x 1.6		1	0pF				ōμF			31	
-	LL0306	0.8 x 1.6				22	00pF	0.068µ					
Low ESL Wide Width	LL0508	1.25 x 2.0					4700pF		.33µF			32 - 33	
Туре	LL0612	1.6 x 3.2					0.01µF		1μF				

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS COG AND TEMPERATURE COMPENSATING TYPES GRM36/39/40/42-6/42-2/43-2/44-1 Series

FEATURES

- Miniature size
- No Polarity
- Nickel Barrier Termination Standard highly resistant to metal migration
- Uniform dimensions and configuration
- Suitable for reflow soldering
- GRM39, 40 and 42-6 suitable for wave soldering
- Minimum series inductance
- Tape and Reel Packaging
- Bulk Case Packaging available for GRM40 and smaller
- Wide selection of capacitance values and voltages
- Largest production capacity and volume in the world

PART NUMBERING SYSTEM

CAPACITOR TYPE AND SIZE See below and following pages.	3-digit code appears as necessary to indicate	TEMPERATURE CHARACTERISTICS COG COH	CAPACITANCE VALUE Expressed in picofarads and identified by a three-digit number.	CAPACITANCE TOLERANCE *= Standard ≤ 5pf:	VOLTAGE Identified by a three-digit	mari A = U	(ING nmarked	PACKAGI	NG
onowing pages.	special thickness	P2H R2H	First two digits represent significant	B = ±.1pf *C = ±.25pf	number.		Reel Dian Tape Mat		Code
	requirements.	S2H	figures. Last digit	>5pf to 10pf:		Γ	7" Paper	Гаре	D
	Please consult	T2H	specifies the number of zeros to follow.	$B = \pm .1 pf$		Γ	7" Plastic	Tape	L
	your local sales office	U2J SL	For fractional values	C = ±.25pf *D = ±.5pf		Γ	13″ Paper	Tape	J
	for details.	01	below 10pF, the letter "R"	>10pf:		Γ	13" Plasti	c Tape	K
			is used as the decimal	$K = \pm 10\%$		Γ	Bulk		В
			point and the last digit becomes significant.	*J = ±5% G = ±2%		Γ	Bulk Casse	tte	С
			Soothoo organitount.	$F = \pm 1\%$			7″ Paper 2mm pitch		Q
							See pages 115 packaging info		beling an

CHIP DIMENSIONS

Dimensions: mm	Size	EIA Code	L Length	W Width	T Thickness	e (min.) Termination	g (min.) Insulation
	GRM36	0402	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.15 ~ 0.3	0.4
	GRM39*	0603	1.6 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.2 ~ 0.5	0.5
					0.6 ± 0.1	0.2 ~ 0.7	
	GRM40	0805	2.0 ± 0.1	1.25 ± 0.1	0.85 ± 0.1		0.7
F ZA F ZA					1.25 ± 0.1		
	GRM42-6	1206	3.2 ± 0.15	1.6 ± 0.15	0.85 ± 0.1	0.3 ~ 0.8	
				1.0 ± 0.15	1.15 ± 0.1		1.5
			3.2 ± 0.2	1.6 ± 0.2	1.6 ± 0.2		
					1.15 ± 0.1		
	GRM42-2	1210	3.2 ± 0.3	2.5 ± 0.2	1.35 ± 0.15	0.3 min.	1.0
2	uniii42-2	1210	0.2 ± 0.0	2.5 ± 0.2	1.8 ± 0.2	0.5 mm.	1.0
					2.5 ± 0.2		
	GRM43-2	1812	4.5 ± 0.4	3.2 ± 0.3	2.0 max.	0.3 min.	2.0
	GRM44-1	2220	5.7 ± 0.4	5.0 ± 0.4	2.0 max.	0.3 min.	2.0

*Bulk case packaging is L = 1.6 ± 0.07 , W, T = 0.8 ± 0.07 .

CHIP TERMINATION DIAGRAMS

All products on this page are available as standard through authorized Murata Electronics Distributors.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS COG AND TEMPERATURE COMPENSATING TYPES – SPECIFICATION GRM36/39/40/42-6/42-2/43-2/44-1 Series

GENERAL

Temperature Coefficient	Temperature Range					
COG = 0 ± 30 ppm*	–55° to +125°C					
$COH = 0 \pm 60 \text{ ppm}$	–55° to +125°C					
P2H = N150 ± 60 ppm	–55° to +85°C					
R2H = N220 ± 60 ppm	–55° to +85°C					
S2H = N330 ± 60 ppm	–55° to +85°C					
T2H = N470 ± 60 ppm	–55° to +85°C					
U2J = N750 ± 120 ppm	–55° to +85°C					
SL = N1000 to P350	–55° to +85°C					
*TC Tolerance for COG Refer to FIA-RS198F for other limitations						
T2H = N470 ± 60 ppm U2J = N750 ± 120 ppm SL = N1000 to P350	-55° to +85°C -55° to +85°C					

ELECTRICAL

LEOINOAL				
TEST				
Capacitance & Q (Frequency & Voltage):	≤1000pF 1MHz ± 100Hz @ 1.0 ± .2 Vrms >1000pF 1kHz ± 100Hz @ 1.0 ± .2 Vrms			
Q Limits	≤30pF: 400 + (20xC (pF)) >30pF: 1000 minimum			
Insulation Resistance (I.R.)	100,000 megohms or 1000 megohms – mfd (whichever is less) with rated voltage applied for 2 minutes max with 50mA limiting current			
Dielectric Strength (Flash)	250% of rated voltage for 5 seconds with series resistor limiting charging current to 50mA max.; 200% for 500V			
Aging	Negligible			

MECHANICAL

TEST	TEST METHOD	POST TEST LIMITS
Terminal Adhesion	Glass Epoxy Board	≤0603 1.0 lbs. ≥0805 2.2 lbs. No evidence of termination peeling
Deflection	Mounting Capacitor Unit: mm - 45 45 45	1 mm deflection (Glass epoxy board) No mechanical damage Cap., DF, IR meet initial limits
Solderability	MIL-STD-202 Method 208F	Contact factory for test limits

ENVIRONMENTAL

TEST	TEST METHOD	POST TEST LIMITS
Thermal Shock (Air to Air)	MIL-STD-202, Method 107, Condition A Post thermal Shock measurement shall be taken after 24 hours stabilization.	Appearance: No visual damage ΔC : = ±2.0% or ±0.5pF (whichever is greater) Q: >30pF = 1,000 min., \leq 30pF = 400 + [20 x C(pF)] I.R.: = 100,000M Ω min. or 1,000M Ω •µF (whichever is less)
Humidity, Steady State	Maintain the capacitor at $40 \pm 2^{\circ}$ C and 90 to 95% humidity for 500 \pm 12 hours. Remove and let sit for 24 \pm 2 hours at room temperature, then measure.	Appearance: No defects Capacitance: Within $\pm 5\%$ or $\pm .0.5 pF$ (whichever is greater) Q/D.F.: 30pF and over: Q \geq 350; 10pf to 30pf: Q \geq 275+5/2C 10pf and below: Q \geq 200 \pm 10C I.R.: 1,000M Ω or 50M Ω F (whichever is less) C: Nominal Capacitance (pF)
Humidity Load	Apply the rated voltage at $40 \pm 2^{\circ}$ C and 90 to 95% humidity for 500 \pm 12 hours. Remove and let sit for 24 \pm 2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	Appearance: No defects Capacitance: Within $\pm 7.5\%$ or $\pm .0.75pF$ (whichever is greater) Q/D.F.: 30pF and over: Q≥200; 30pf and below: Q≥100 $\pm 10/3C$ I.R.: 500M Ω or 25M Ω F (whichever is less) C: Nominal Capacitance (pF)
Life Test	Apply 200% of rated voltage for 1000 ± 12 hours at maximum operating temperature; 150% for 500V. Upon completion of above test wait 24 hours prior to performing post testing.	Appearance: No defects Capacitance: $\pm 3\%$ or $\pm .3pF$ (whichever is greater) Q: $>30pF = 500$ min., $\le 30pF = 200 + [10 \times C(pF)]$ I.R.: 1,000M Ω or 50M Ω F (whichever is less) Flash: 250% rated voltage

STORAGE LIFE

Chip component terminations should generally be protected from moisture. In addition, they should also be protected from materials containing chlorine, sulfur compounds or any harmful gases that could cause degradation of the solder.

- All chip components, including tape and reel, should be kept in an area where the temperature is between 5°C and 40°C and where the humidity is 20% to 70%.
- 2. The chip components should be used within six months.
- 3. The solderability of the chip components should be rechecked in the event that they are not used in six months.
- 4. Peel strength and shelf life of tape are guaranteed for 1 year when stored under afore said conditions.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS COG/COH TYPE-25V/50V/100V/200V

muRata Innovator in Electronics

SURFACE MOUN MONOLITHIC CHI CAPACITORS

GRM36/39/40/42-6 Series

Type (EIA Code)		86* (0402)		GRM39	(0000)				(0805)				6 (1206)	
Char.	COG	COH		COG		COH		COG		COH		COG		COH
Volt. ap. (pF)	50	25	50	100	200	25	50	100	200	25	50	100	200	25
0.75														
1.5														
2														
4	II													
5			- +		_									
7														
9			_											
10 11	-													
12														
15														
16 18														
20														
22 24														
27 30	-		-	-+			┝┥┝							
33														
36 39													L	
43 47							├ 						+	
51														
56 62								77						
68 75									· · · · · · · · · · · · · · · · · · ·					
82														
91 100	-													
110														
130	II												\overline{M}	
150 160														
180														
220			_											
240 270														
300														
360														
390 430														
470												277		
560														
620 680						+-1								
750														
910														
1000 1100							[/]						+	
0.5 0.73 1 1.5 2 2 3 4 4 5 6 7 8 9 10 11 12 13 15 16 18 18 18 18 18 18 18 18 18 18														
1500														
1600 1800								+					+	
2000														
2400														
2700 3000														
3300											1/1			
3900														.
4300 4700						·		·					<u></u>	<u></u>
5100														
6200														
6800 7500														
8200														
9100 10000													<u></u>	
11000														
13000														
15000														

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ¹	Bulk Case (pcs./case)	Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ¹	Bulk Case (pcs./case)
GRM36	: 0.5 ± 0.05	1000	10000	50000	GRM42-6	CCC: 0.85 ± 0.1	1000	4000	—
GRM39	: 0.8 ± 0.1 ²	1000	4000	15000	UNIVI42-0	: 1.15 ± 0.1	1000	3000	_
	: 0.6 ± 0.1	1000	4000	10000					
GRM40	2. 0.85 ± 0.1	1000	4000	—					
	: 1.25 ± 0.1	1000	3000	5000	¹ 4330mm	reel is available on requ	est. ² Bulk cas	e packaging is T = 0.8 ± 0.0)7.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS COG TYPE-50V/100V/200V

GRM42-2/43-2/44-1 Series

Type (EIA Code)	(GRM42-2 (1210)		GRM43-2 (181	2)	(GRM44-1 (222	0)
Char.		COG			COG			COG	
Volt. Cap. (pF)	50	100	200	50	100	200	50	100	200
130									
150									
160 180									
200									
220									
240									
270 300									
330									
360									
390 430									
470									
510									
560 620									
680						+			
750									
820									
910 1000									
1100		777				-+			
1200									
1300 1500									
1600						+			
1800									
2000									
2200 2400									
2700									
3000									
3300 3600									
3900									
4300									
4700									
5100 5600									
6200									
6800									
7500 8200									
9100									
10000									
11000									
12000 13000									
15000				·					
16000									
18000 20000									
20000						++			-
24000						1			
27000									
30000 33000								·····	
36000						++			
39000									
43000									

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*
GRM42-2	: 1.35 ± 0.15	1000	2000
GRM43-2	. 2.0 max.	1000	1000
GRM44-1	. 2.0 max.	1000	1000

*6330mm reel is available on request.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TEMPERATURE COMPENSATING TYPE-25V/50V

	muRata
GRM36/	Innovator in Electronics 39 Series

Type (EIA Code)		i* (0402)					GRM39							
Char.	:	SL	S	L	F	2H	R2	2H	S	2H	Т	2H	ι	J2J
Volt. Cap. (pF)	25	50	25	50		50	5	0	5	0	ļ	50		50
0.5 0.75 1														
1 1.5 2														
23														
4 5														
67														
8 9														-
10														
12														
15														
18														
20														
24 27														
11 12 13 16 18 20 24 24 24 24 24 24 24 24 24 24 24 24 24 27 30 33 36 37 47 51 52 91 100 120 200 240 300														
36 39														H
43 47														
51														
62														H
75														
91 100														
110														
120 130														
150 160														E
180 200														
220														
270														H
330														
390 420														
430														
510 560														
620 680														
750 820				L L									L	
910 1000														
1100														
1300														
1300 1500 2200 2400 2400 3000 3000 3300 4300 43														
2000														
2400														
3000														
3300 3600														
3900 4300														
4700 5100														
5600														
6800 7500														
8200														
10000														
12000														
13000														

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

1 *GRM36 is suited to only reflow soldering.

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ¹	Bulk Case (pcs./case)
GRM36	: 0.5 ± 0.05	1000	10000	50000
GRM39	: 0.8 ± 0.1 ²	1000	4000	15000

 1 ϕ 330mm reel is available on request. 2 Bulk case packaging is T = 0.8 ± 0.07.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TEMPERATURE COMPENSATING TYPE-25V/50V

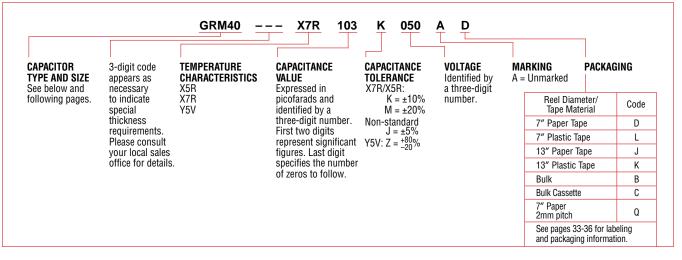
Type (EIA C	ode)					M40 (08											M42-6 (12			
Char.		S	L	P2	H	R2H	S	2H		T2H		U2J		S	L	P2H	R2H	S2H	T2H	U2J
Cap. (pF)	Volt.	25	50	50)	50	5	i0		50		50		25	50	50	50	50	50	50
	0.5																			
	0.5 0.75 1																			
	1.5 2 3																			
	4					-					-									
	5 6 7																			
	8																			
	10					-					-									
	89011121351682244703336993437156285229000011220202020202020200000000000000																			
	15																			
	18					-					-									
	20											.								
	24																			
	30 33										-									
	30 39											.								
	43 47																			
	56										-									
	62 68											.								
	75 82																			
	100					-					-									
	120																			
	130 150									77										
	180										-									
	200																			
	240																			
	300										-									
	300											.								
	430				+-			2												
	560										-									
	680 750											1								
	820 010											1						PZA		
	1000																· · · · · · · · · · · · · · · · · · ·			
	1200											-								
	1500											$\overline{\mathcal{N}}$								
	1800								1		-									
	2200																			
	2700																			
	3300	P ZA													771				· · · · ·	77
	3900																		· · · · ·	//
	1600 1800 2000 2400 2700 3300 3600 3900 4700 5100 5600 6800 6800 6800 6800 9100 110000 110000 13000 15000																			
	5600						·						-							
	6800 7500																			
	8200 9100																			
	10000						· 				-									
	12000																			
	15000						+		+							·	+	+	+	

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*	Bulk Case (pcs./case)	Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*	Bulk Case (pcs./case)
	: 0.6 ± 0.1	1000	4000	10000	GRM42-6	CCC: 0.85 ± 0.1	1000	4000	—
GRM40	ZZ: 0.85 ± 0.1	1000	4000	_	UNIVI42-0	: 1.15 ± 0.1	1000	3000	—
	: 1.25 ± 0.1	1000	3000	5000	*ф330mm r	reel is available on reque	est.		

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS HIGH DIELECTRIC CONSTANT TYPE


SURFACE MOUNT

APACITORS

- FEATURES
- Miniature size
- No Polarity
- Nickel Barrier Termination Standard highly resistant to metal migration
- Uniform dimensions and configuration
- Suitable for reflow soldering
- GRM39, 40 and 42-6 suitable for wave soldering
- Minimum series inductance
- Tape and Reel Packaging
- Bulk Case Packaging available for GRM40 and smaller
- Wide selection of capacitance values and voltages
- Largest production capacity and volume in the world

PART NUMBERING SYSTEM

CHIP DIMENSIONS

Dimensions: mm	Size	EIA Code	L Length	W Width	T Thickness	e (min.) Termination	g (min.) Insulation
	GRM36	0402	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.15 ~ 0.3	0.4
	GRM39*	0603	1.6 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.2 ~ 0.5	0.5
					0.6 ± 0.1		
	GRM40	0805	2.0 ± 0.1	1.25 ± 0.1	0.85 ± 0.1	0.2 ~ 0.7	0.7
PZA PZA					1.25 ± 0.1		
			3.2 ± 0.15	1.6 ± 0.15	0.85 ± 0.1		
	GRM42-6	1206	5.2 ± 0.15	1.0 ± 0.15	1.15 ± 0.1	0.3 ~ 0.8	1.5
			3.2 ± 0.2	1.6 ± 0.2	1.6 ± 0.2		
					1.15 ± 0.1		
	GRM42-2	1210	3.2 ± 0.3	2.5 ± 0.2	1.35 ± 0.15	0.3 min.	1.0
L	0111142-2	1210	3.2 ± 0.3	2.J ± 0.2	1.8 ± 0.2	0.5 mm.	1.0
					2.5 ± 0.2		
	GRM43-2	1812	4.5 ± 0.4	3.2 ± 0.3	2.0 max.	0.3 min.	2.0
	GRM44-1	2220	5.7 ± 0.4	5.0 ± 0.4	2.0 max.	0.3 min.	2.0

*Bulk case packaging is L = 1.6 \pm 0.07, W, T = 0.8 \pm 0.07.

CHIP TERMINATION DIAGRAMS

All products on this page are available as standard through authorized Murata Electronics Distributors.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS HIGH DIELECTRIC CONSTANT TYPE- SPECIFICATION GRM36/39/40/42-6/42-2/43-2/44-1 Series

GENERAL/ELECTRICAL

Capacitance Change with Temperature:	X7R: :	±15% ΔCX -5 ±15% ΔCX -5 * ²² % ΔCX -30°	5°C to +12	5°C	
Capacitance & D.F. (Frequency & Voltage)	,	X7R: 1kHz ±10 IkHz ±100Hz @			
Dissipation Factor (D.F.)	X5R X7R Y5V	Min. 25V 2.5% 2.5% 5.0%	16V 3.5% 3.5% 9.0%	10V 3.5% 3.5% 12.5%	6.3V 5% 5% 12.5%

_	Insulation Resistance (I.R.)	X5R/X7R 100,000 megohms or 1000 megohms-mfd (whichever is less) Y5V 10,000 megohms or 500 megohms-mfd (whichever is less)
_	Dielectric Strength (Flash)	250% of rated voltage for 5 seconds with series resistor limiting charge current to 50mA max.; 200% for 500V
	Typ. Aging (per Decade)	X5R/X7R 3% Y5V 7%

MECHANICAL

TEST	TEST METHOD	POST TEST LIMITS
Terminal Adhesion	Glass epoxy board	$<\!0603$ 1.0 lbs. $\ge\!0805$ 2.2 lbs. No evidence of termination peeling
Deflection	Mounting Capacitor Unit: mm - 45 45	1 mm deflection (Glass epoxy board) No mechanical damage Cap., DF, IR meet initial limits
Solderability	MIL-STD-202 Method 208F	Meets Requirement For specific details contact factory

ENVIRONMENTAL

TEST	TEST METHOD			F	POST TEST LIMITS		
Thermal Shock (Air to Air)	MIL-STD-202, Method 107, Condition A Prior to starting Thermal Shock test, capacitors shall be heat treated (deaged) for one (1) hour at 150°C. Allow capacitors to stabilize at room temperature for 48 hours prior to taking initial measurements. Post thermal Shock measurement shall be taken after 48 hours stabilization.	L: X5 Y5 D.F.: X5 Y5 I.R.: X5	F/X7R = V = ±30 K/X7R = 5V = 5.0° (15° K/X7R =	= 2.5% max. @ (7.5% max. @ % max. @ 25°(% max. @ 25°(= 100,000MΩ	25°C, (3.5% max. @ 2 25°C for 6.3V Series) C, (9.0% max. @ 25°C C for 10V & 6.3V Series min. of 1,000MΩ•μF (ι Ω•μF min. (whichever	for 16V Serie ;) vhichever is	es)
Humidity, Steady State	Maintain the capacitor at $40 \pm 2^{\circ}$ C and 90 to 95% humidity for 500 \pm 12 hours. Remove and let sit for 48 \pm 4 hours at room temperature, then measure.	Capacit Q/D.F.:	ance: X See ch	art below.	hin ±12.5%; Z5U, Y5 vhichever is less)	5V within ±	30%
	Apply the rated voltage at $40 \pm 2^{\circ}$ C and 90 to 95% humidity for 500 \pm 12 hours. Remove and let sit for 48 \pm 4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	Capacit	ance: X / within	+30/-40% (hin ±12.5%; Z5U wit 10Vmax), within ±30)% (others	
Humidity Load	 Jity, Maintain the capacitor at 40 ± 2°C and 90 to 95% humidity for 500 ± 12 hours. Remove and let sit for 48 ± 4 hours at room temperature, then measure. Apply the rated voltage at 40 ± 2°C and 90 to 95% humidity for 500 ± 12 hours. Remove and let sit for 48 ± 4 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for Y5V/10V max. Apply the rated DC voltage for 1 hour at 40 ± 20°C. Remove and let sit for 48 ± 4 hours at room temperature. Perform initial measurement. 		Char. X5R	25V min.	16V	10V	6.3V
			X7R	0.05 max.	0.05 max.	0.05 max.	0.075 max.
		Q/D.F.	Z5U Y5V	0.05 max. 0.075 max.	 0.1 max. (C<1.0μF) 0.125 max. (C≥1.0μF)	 0.15 max.	 0.15 max.
				or 25 Ω F (wh ngth: No failu	ichever is less) Ire		
Life Test	Apply 200% of rated voltage for 1000 ± 12 hours at maximum operating temperature; 150% for 500V Upon completion of above test wait 48 hours prior to performing post testing.	D.F.: X5 Y5 I.R.: X5 Y5	Ince: X5I FR/X7R = V = 7.5% (15% FR/X7R 1 V 1,000	R/X7R ± 12.5% = 3.0% max. @ (7.5% max. @ 6 max. @ 25°C 6 max. @ 25°C I,000MΩ or 50	 ΔCX, Z5U/Y5V ±30% 25°C, (5% max. @ 25 25°C for 6.3V Series) (10% max. @ 25°C for for 10V & 6.3V Series MΩ-mfd. (whichever is less 	°C for 16V & or 16V Series) ; less)	,

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS HIGH DIELECTRIC CONSTANT X5R/X7R/Y5V TYPES

muRata Innovator in Electronics GRM36/39/40 Series

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS

Type (EIA Code)				GR	M36	* (0	402)								GRM	39 (0	D603)							GF	RM40) (08	05)			
Char.	X	5R		X	7R			Y	5V				X	7R					Y5V					X	7R				Y5	V	
Volt. ap. (pF)	10	16	10	16	25	50	10	16	25	50	10	16	25	50	100	200	10	16	25	50	100	10	16	25	50	100	200	16	25	50	10
220				ļ					 				ļ		ļ					 				ļ			Ø				
270						4										4								 							
330				-		┦╢								┦╽		┥┝											И				
390 470						+							 		+	4								.							
470 560						+																		+							
680						┥										┥┝									┥		R				
820				+		+							+		+	1								+			K				
1000				+		+							+		+	1								+	•		И	+			
1200						╞┤									<u> </u>										+		И				
1500				+		11							+	1		1								+	1		1/1	+			
1800				1		11							1	1		11								+			1/1	1			
2200																															
2700]] [
3300																															
3900													 																		-
4700													ļ											ļ							P
5600					╽╽																										~
6800										Ш			 																		P
8200																															
10000																									+						
12000 15000		┥		+		+							+		+									.	-+-		.	+			
18000																				-				+		┝╎╴┛┻┙	+				
22000		┥┝		-		-																		-	┥		-			П	
27000		┟┷┵		+					-				┥┥┝							┟└──┘╴				╬┍┯		╋┝╍╍╸	+				
33000				+		+							┦┤		+									┥	\mathbb{V}	╊	<u>+</u>	+		П	
39000			H			-							Ħŀ													1—					
47000				+		+							 		+									1			+	+		П	
56000				+																- LJ-				И			+				
68000	1																							И						Π	
82000				†		1							1													1	1				
100000								\square															\square			1	1			И	
120000										2																					
150000										2																				\square	
180000										2	+-													N							
220000		 		.		ļ				2			 	ļ	ļ		ļ			ļ	.			K			.	\square	\square		
270000		l		.		ļ							 		.		ļ							K			.				
330000				-		-							-		-										-	_	-				
390000				+							 		 		+						 		-	-			 				
470000				+			ļĽ						+		+	2	<u>الا</u>		l								.				
560000 680000		-	<u> </u>	-		-	-		<u> </u>		<u> </u>		-		-	2		<u> </u>		-	<u> </u>			-	-		-				
820000				+			+						+		+	2	<u>اللا</u>					-		+			+				
1000000			+	+		+	+				 		+	+	+			+			+	-		+			+				
1500000				-		-																					-				
2200000			+	+		+	+				<u> </u>		+	+	+		+	+						+	+		+				
3300000			+	+		+	+				+	+	+	+	+		+	+		+	+			+		+	+				
4700000				-		-	-						-		-									-	-		-				
10000000			+	+		+	+				+		+		+		+	+	l	+	+			+	+		+	+			+

*GRM36 Series is suited to only reflow soldering. 1Type: GRM40-034 (L: 2 ± 0.15, W: 1.25 ± 0.15, T: 1.25 ± 0.15) ²Only for taping

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ³	Bulk Case (pcs./case)	Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ³	Bulk Case (pcs./case)
GRM36	: 0.5 ± 0.05	1000	10000	50000	GRM40	ZZ: 0.85 ± 0.1	1000	4000	—
GRM39	: 0.8 ± 0.1 ⁴	1000	4000	15000	UN10140	: 1.25 ± 0.1	1000	3000	5000
GRM40	: 0.6 ± 0.1	1000	4000	10000	³∲330mm	reel is available on reque	est. ⁴ Bulk cas	e packaging is T = 0.8 ± 0.0	17.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS HIGH DIELECTRIC CONSTANT X5R/X7R/Y5V TYPES GRM42-6/42-2/43-2/44-1 Series

Type (EIA Code)							12-6 (120	6)									(121	-		-	RM4		-	-			4-1 (-	
Char.	X	5R			X	7R					Y5V			X5R		X	7R		Y	5V		X7R		Y	5V		X7R		Y	5V
Volt. Cap. (pF)	6.3	10	10	16	25	50	100	200	6.3	16	25	50	100	10	16	50	100	200	50	100	50	100	200	50	100	50	100	200	50	10
3300																														+
3900																		[[[T
4700																														T
5600																														
6800																														
8200																														
10000																		\square												T
12000																						1								1
15000					+																									+
18000																		K												┢
22000					+	+												K					1 1							+
27000					+	+																								+
33000																		R					╞┥╞							╈
39000					+													И					1 1							+
47000																							1 1							+-
56000																		rл					╞┥╞					HH		╈
68000					+	+						+										+						1 1		+
82000					+	\square						+					1					+						1 h		+
100000																	Ø						╞┥╞					HH		╈
120000					+	14														-67			H					H H		+
150000					+														\square									H H		+
180000																			ĽЛ			╊┤┝						HH		+
220000					+ -	+						+				\mathbb{N}			0			 						H H		+-
270000					+-	+						+				ĽЛ			22			┟┶╼┵						H H		+-
330000	<u> </u>																				┝┤┝									+
390000												2															+- +			+-
470000																-					+						+- +			÷Γ
560000					N																						╞┥┝			++
680000						+						+				N			\square							-	╎┸┻			+r
820000				-												4			-12											╬
1000000										7						╞┥┝										┡┥┝				+
1200000							·			Z																-				+-
1200000		 			<u> </u>		·																			-				+
																														-
1800000			-												-															
2200000					ļ																	ļ							-	
3300000	L	*													4															
4700000					ļ				-																					Ц.
1000000				5 ± 0.																										

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ¹	Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel) ¹
	Z : 0.85 ± 0.1	1000	4000	GRM42-2	: 1.8 ± 0.2	1000	1000
GRM42-6	: 1.15 ± 0.1	1000	3000	UNIW42-2	: 2.5 ± 0.2	1000	1000
	: 1.6 ± 0.2	1000	2000	GRM43-2	: 2.0 max.	1000	1000
GRM42-2	: 1.15 ± 0.1	1000	3000	GRM44-1	. 2.0 max.	1000	1000
UNIII42-2	: 1.35 ± 0.15	1000	2000	¹ ф330mm r	eel is available on request.		

Note: Capacitance Values = EIA 12 step: X7R = 10,12,15,18,22,27,33,39,47,56,68,82 6 step: Y5V = 10,15,22,33,47,68. For other values contact your local Murata Sales Office

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TANTALUM REPLACEMENT TYPE-SMOOTHING APPLICATION

FEATURES

- Large capacitance at low cost because of the use of basemetal materials
- Terminations are made of metal highly resistant to migrations.
- Heat generation is low at high frequency because of low dielectric loss.
- Compared with aluminum electrolytic capacitors, capacitance can be lower to obtain the same smoothing performance.
- Ceramic capacitor has no polarity and ensures long life time. Ideal replacement for tantalum capacitors.

APPLICATIONS

- DC-DC converter
- Noise elimination for LCD bias circuit (Use for only alumina, paper or glass epoxy board.)
- Reflow soldering only

PART NUMBERING SYSTEM

	GRM230	<u>Y5V</u> <u>106</u>	Z 010	A]
CAPACITOR Type and size	TEMPERATURE Characteristics Y5V	CAPACITANCE VALUE Expressed in picofarads and identified by a	CAPACITANCE TOLERANCE Y5V: Z = +80-20%	VOLTAGE Identified by a three- digit number.		PACKAGING Code
		three-digit number. First two digits			Reel Diameter Tape Material	
		represent significant			7" Paper Tape	D
		figures. Last digit			13" Paper Tape	J
		specifies the number			7" Embossed Ta	pe L
		of zeros to follow.			13" Embossed Ta	pe K

TYPE AND DIMENSIONS

Dimensions: mm	Туре	EIA Code	L Length	W Width	T Thickness	e (min.) Termination	g (min.) Insulation
	GRM220	0603	1.6 ± 0.1	0.8 ± 0.1		0.2 ~ 0.5	0.5
	GRM225	0805	2.0 ± 0.1	1.25 ± 0.1	Please refer to the	0.2 ~ 0.7	0.7
	GRM230	1206	3.2 ± 0.15	1.6 ± 0.15	capacitance range table	0.3 ~ 0.8	1.5
	GRM235	1210	3.2 ± 0.3	2.5 ± 0.2		0.3	1.0

CAPACITANCE RANGE TABLE (μ F)

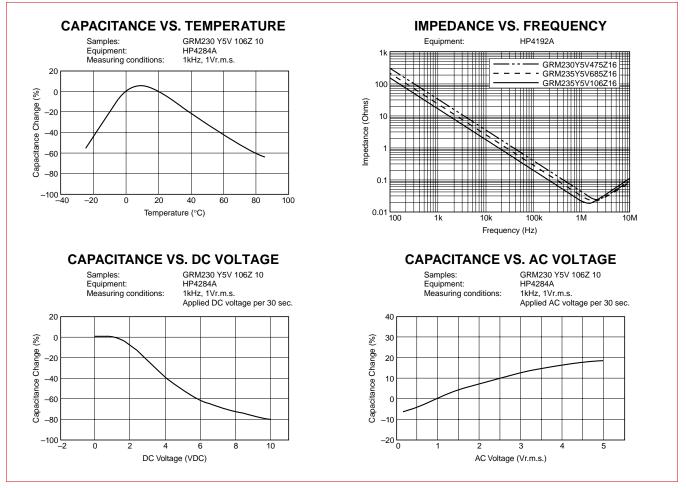
Tuno	EIA	Thickness	DC Rated Voltage								
Туре	Code	T (mm)	100V	50V	25V	16V	10V	6.3V			
GRM220	0603	0.8 ± 0.1	—			—	1				
GRM225	0805	1.25 ± 0.1	—	_	—	—	—	10			
GRM230	1206	1.15 ± 0.1	—	—	—	4.7	10	—			
GRM235	1210	1.35 ± 0.15	—	_	6.8	6.8, 10	22				
01111200	1210	1.8 ± 0.2	1	4.7	10	—	—				
Capacitar	ice Tol	erance*			Z: <u>+</u>	80% 20%					

Tuno EIA Thickness Bulk Taping

THICKNESS AND PACKAGING TYPES/QUANTITY

Ty	ype	EIA Code	T (mm)	Bulk (pcs./bag)	l aping (pcs./ф178mm reel)
GRI	M220	0603	0.8 ± 0.1	1000	4000
GRI	M225	0805	1.25 ± 0.1	—	3000
GRI	M230	1206	1.15 ± 0.1	—	3000
GRI	M235	1210	1.5 ⁺⁰ 0.3	—	2000
ani	WIZJJ	1210	2.0 +0		1000

*Cap. + DF Test Frequency ≤10MFD 1KHZ 1.0VRMS >10MFD 120HZ 0.5VRMS


SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TANTALUM REPLACEMENT TYPE-SMOOTHING APPLICATION

CHARACTERISTICS (REFERENCE DATA)

Selection of Ceramic Capacitors

When selecting capacitors, consider the DC voltage characteristics (AC & DC) and aging characteristics.

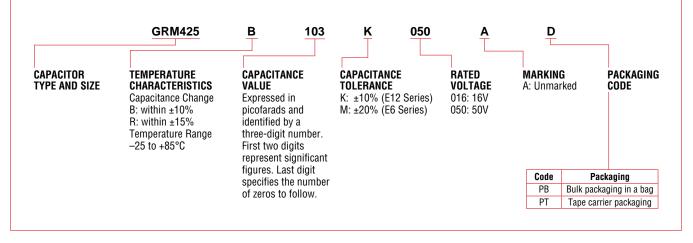

ALLOWABLE RIPPLE CURRENT

Ripple current should be less than "Allowable Ripple Current Value" shown in the following table, and temperature rise of the chip surface (ΔT) should be below 20°C.

When AC and DC voltage are superimposed, keep the peak value of the voltage within the rated voltage.

Chip Size	$\begin{array}{l} \textbf{100kHz} \leq \textbf{f} \\ < \textbf{300kHz} \end{array}$	$\begin{array}{l} \textbf{300kHz} \leq \textbf{f} \\ < \textbf{500kHz} \end{array}$	$\begin{array}{l} \text{500kHz} \leq \text{f} \\ \leq \text{1MHz} \end{array}$	
Rated Voltage: 6.	3V			
GRM225	1.4 Ar.m.s.	1.5 Ar.m.s.	1.6 Ar.m.s.	
Rated Voltage: 10	V			
GRM220	1.4 Ar.m.s.	1.5 Ar.m.s.	1.6 Ar.m.s.	Voltage (V)
GRM230	1.5 Ar.m.s.	1.6 Ar.m.s.	1.6 Ar.m.s.	Rated CV Voltage
GRM235	1.7 Ar.m.s.	1.8 Ar.m.s.	2.0 Ar.m.s.	volage
Rated Voltage: 16	δV			
GRM230	1.5 Ar.m.s.	1.6 Ar.m.s.	1.6 Ar.m.s.	► Time (sec.)
GRM235	1.7 Ar.m.s.	1.8 Ar.m.s.	2.0 Ar.m.s.	(SCC.)
Rated Voltage: 25	5V/50V			
GRM235	2.0 Ar.m.s.	2.2 Ar.m.s.	2.2 Ar.m.s.	
Rated Voltage: 10	JOV			
GRM235	1.6 Ar.m.s.	1.7 Ar.m.s.	1.8 Ar.m.s.	

muRata Innovator in Electronics GRM400 Series


FEATURES

- Features a low dissipation factor and low distortion
- Low shock noise* is realized without piezoelectric effects.
 Suited to both flow and reflow soldering techniques without
- the need for silver Suitable for most automatic placement equipment
- Suitable for most automatic placement equipment *Noise resulting form mechanical stress

APPLICATIONS

Low distortion in general electronic equipment

PART NUMBERING SYSTEM

TYPE AND DIMENSIONS

Dimensions: mm	Туре	EIA Code	L Length	W Width	T Thickness	e Termination	g (min.) Insulation
	GRM420	0603	1.6 ± 0.1	0.8 ± 0.1		0.2 ~ 0.5	0.5
	GRM425	0805	2.0 ± 0.1	1.25 ± 0.1	Please refer to the capacitance range table.	0.2 ~ 0.7	0.7
	GRM430	1206	3.2 ± 0.15	1.6 ± 0.15		0.3 ~ 0.8	1.5

Type (EIA Code)	GRM42	0 (0603)	GRM	425 (0805)	GRM430	(1206)
Char.	R	В	R	В	R	В
Volt. Cap. (pF)	16	50	16	50	16	50
1000						
1200						
1500						
1800						
2200						
2700						
3300						
3900						
4700						
5600						
6800						
8200						
10000						
12000	 					
15000						
18000						
22000						
27000						
33000						
39000						
47000						
56000						
68000						
82000						
100000						

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*	Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*
GRM420	: 0.8 ± 0.1	1000	4000		: 0.7 ⁺⁰ _{-0.2}	1000	4000
GRM425	: 0.7 ⁺⁰ _{-0.2}	1000	4000	GRM430	: 1.0 ⁺⁰ _{-0.2}	1000	4000
01111420	: 1.0 ⁺⁰ _{-0.2}	1000	4000		: 1.25 ⁺⁰ _{-0.2}	1000	3000

*6330mm reel is available on request.

Innovator in Electronics GRM400 Series

SPECIFICATIONS AND TEST METHODS

No.	Item	_		Specification			Test	Method				
1	Operating Temperature Range	B, R: ·	–25°C to) +85°C				_				
2	Rated Voltage	See pi	revious (Dage.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{0-P} , whichever is larger, shall be maintained within the rated voltage range.						
3	Appearance	No de	fects or	abnormalities.		Visual inspectio	n.					
4	Dimensions	Withir	n the spe	ecified dimension.		Using calipers.						
5	Dielectric Strength	No de	fects or	abnormalities.		No failure shall applied betweer the charge/discl		s for 1 to 5 sec	onds, provided			
6	Insulation Resistance (I.R.)	C > 0.	047μF:	10000M ohms mi 500 ohms • F min pacitance (μF)		The insulation r not exceeding th humidity, and w	he rated voltage	at normal temp				
7	Capacitance	Withir	n the spe	ecified tolerance.		The capacitance 1 ± 0.1kHz and	shall be measu a voltage of ±0.2		frequency of			
8	Dissipation Factor (D.F.)	B, R: (0.01 ma	х.		D.F. shall be me capacitance.	asured under th	e same conditio	ns as the			
9	Capacitance Temperature Characteristics	Char. B	Temp. Range -25 ~	Capacitan Without Voltage Within ±10%	ce Change With 50% Rated Voltage Within ⁺¹⁰ %		apacitance chan emperature rang fied ranges.					
		R	+85°C	Within ±15%	Within ⁺¹⁵ / ₋₂₀ %							
10	Distortion		-90dB m -80dB m				The distortion shall be measured using the third harmonic distortion, 10 ± 1 kHz in frequency and 1 ± 0.2 Vr.m.s. in voltage.					
11	Adhesive Strength of Termination	No rei shall d		the terminations	or other defects ⊣ ^c l ≺	eutectic solder. arrow. The sold the reflow meth	Solder the capacitor to the test jig shown in Fig. 1e using a eutectic solder. Then apply 10N* force in the direction of the arrow. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that th soldering is uniform and free of defects such as heat shock. *5N (GRM42					
		ь <u>•</u>		Fig. 1e	Solder resist		a 1.0 1.2 2.2	b 3.0 4.0 5.0	C 1.2 1.65 2.0 (in mm			
12	Vibration Resistance	satisfy Item Appe Capa D.F.	r the spe arance citance	and observed ch ecifications in the Specification No marked de Within the spe 0.01 max.	aracteristics shall following table. fect cified tolerance	same manner a The capacitor sl having a total au uniformly betwee frequency range traversed in app applied for a pe perpendicular d	hall be subjected mplitude of 1.5m een the approxim e, from 10 to 551 proximately 1 mi riod of 2 hours i irections (total o	ne conditions as to a simple har the frequency tate limits of 10 Hz and return to nute. This motion n each of 3 mut f 6 hours).	s (11). monic motion cy being varied and 55Hz. The 10Hz, shall be on shall be rually			
13	Deflection		ACKS OF F	narking defects s	nail occur.	Solder the capacitor to the test jig (glass epoxy board) show Fig. 2e using a eutectic solder. Then apply force in the directi shown in Fig. 3e for 5 ± 1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free defects such as heat shock.						
				20.50 Pre	essurizing			•				
				<u>F</u> ∰ spe	eed: 1.0mm/sec. surize	Fig. 2e	• a 10	40 40 t: 1.6	mm			

SPECIFICATIONS AND TEST METHODS

No.	Item	Spo	ecification		Te	est Metho	d				
14	Solderability of Termination	75% of the termination evenly and continuou		rosin (JIS-K- Preheat at 80	5902) (25% ros) to 120°C for 1(in in weig) to 30 se	ethanol (JIS-K-& ht proportion). conds. After prel r 2 ± 0.5 seconds	heating,			
15	Resistance to Soldering Heat		served characteristics shall ons in the following table.	sit for 48 ± 4	hours at room	temperatu	for one hour and ire. Measure initi	al values.			
		ltem	Specification	Preheat the capacitor for 1 minute at 120 to 150°C. Immerse capacitor in a eutectic solder solution at $270 \pm 5^{\circ}$ C for 10 ± 0 .							
		Appearance	No marked defect		for 48 \pm 4 hours						
		Capacitance Change	Within ±7.5%		then measure v						
		I.R.	More than 10000M ohms or 500 ohms • F (Whichever is smaller)								
		D.F.	0.01 max.								
		Dielectric Strength	No failure								
16	Temperature Cycle	The measured and observed characteristics shall satisfy the specifications in the following table.		sit for 48 ± 4	hours at room	temperatu	for one hour and ire. Measure initi	al values			
		ltem	Specification		ble. Fix capacito under the same		upporting jig in t	the same			
		Appearance	No marked defect	Perform the f	five cycles accor	rding to th	ie four heat treat	ments			
		Capacitance Change	Within ±7.5%	shown in the	he five cycles according to the four heat treatme the following table. Let sit for 48 ± 4 hours at re ire, then measure final values of items in table.			t room			
		I.R.	More than 10000M ohms or 500 ohms • F (Whichever is smaller)	Step	1 Min. Operating	2 Room	3 Min. Operating	4 Room			
		D.F.	0.01 max.	Temp. (°C)	Temp. $^{+0}_{-3}$	Temp.	Temp. $^{+3}_{-0}$	Temp.			
		Dielectric Strength	No failure	Time (min.)	-	2 to 3	30 ± 3	2 to 3			
17	Humidity Steady State	The measured and ob satisfy the specification	Set the capac 500 ± 12 hou	citor at 40 ± 2°C Irs. Remove and	l let sit fo	o 95% humidity r 48 ± 4 hours at					
		ltem	Specification	temperature,	then measure v	alues of it	tems in table.				
		Appearance	No marked defect								
		Capacitance Change	Within ±12.5%								
		I.R.	More than 1000M ohms or 50 ohms • F (Whichever is smaller)								
		D.F.	0.015 max.								
18	Humidity Load		served characteristics shall ons in the following table.	Apply the rated voltage at $40 \pm 2^{\circ}$ C and 90 to 95% humidity for 500 \pm 12 hours. Remove and let sit for 48 \pm 4 hours at room							
		Item	Specification				tems in table. Th	е			
		Appearance	No marked defect	charge/discha	arge current is l	ess than t	ουπα.				
		Capacitance Change	Within ±12.5%								
		I.R.	More than 500M ohms or 25 ohms • F (Whichever is smaller)								
		D.F.	0.015 max.								
19	High Temperature Load		served characteristics shall ons in the following table.				r one hour at the . Let sit for 48 ±				
		Item	Specification				itial values of iter				
		Appearance	No marked defect				age for 1000 ± 1 °C. Remove and				
		Capacitance Change	Within ±12.5%	48 ± 4 hours	at room temper	ature, the	urrent is less tha	values of			
		I.R.	More than 1000M ohms or 50 ohms • F (Whichever is smaller)								
		D.F.	0.015 max.								

Innovator in Electronic **GRM400** Series

CHARACTERISTICS

10

100m

10m

12 10

8

6

4 2

0

-2 -4 -6 -8 -10

-12

-14

20 15 10

5

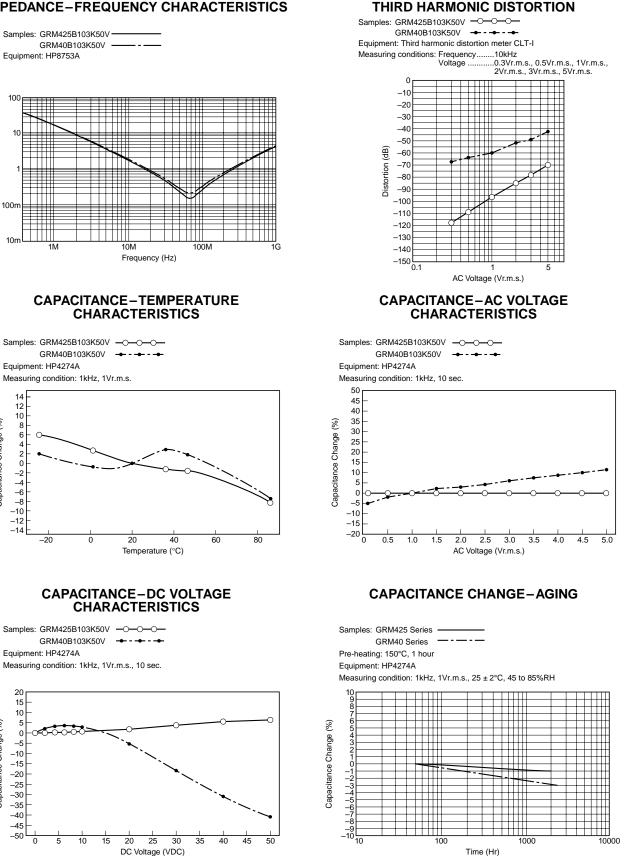
0 -5 -10 -15 -20

-25

-30

-35 -40 -45

-50


0

Capacitance Change (%)

Impedance (Ohms)

Selection of Ceramic Capacitors When selecting capacitors, consider the voltage characteristics (AC & DC) and aging characteristics.

Capacitance Change (%)

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TIP AND RING CAPACITORS

GRM43-2/43-4/44-1/44 Series

Ceramic chip capacitors used to block the "OFF HOOK" DC Voltage and pass the AC "Ring signal".

FEATURES

Nickel barrier **ELECTRICAL DATA**

Dielectric Strength

D. F.

I. R.

- **APPLICATIONS** Modems
- SMT compatibility Save board space

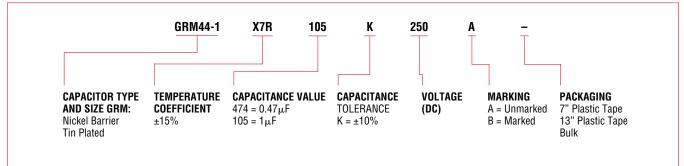
Standard EIA case size Replace film caps

250VDC Telco rating

2.5% max. (1±0.1KHz @ 1±0.2Vrms)

120% of rated voltage for 5 sec.

(50mA maximum charge current)


100Gohm or 1Gohm/mF (whichever less)

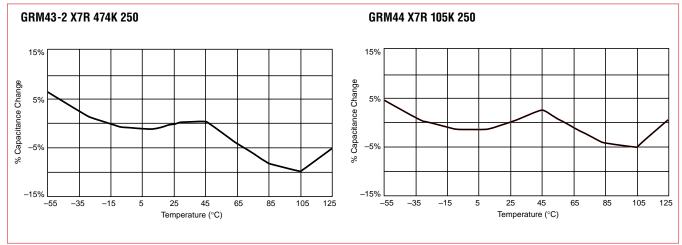
Telecommunication Circuits

SPECIFICATIONS						(001111		charge curren	,	
						_	T	Capacitance	Packaging	
	EIA Type		L	W	g min.	e	T max.	Range (µF)	Bulk	7" Reel
	1812*	GRM43-2	4.6 ± 0.3	3.2 ± 0.2	2.0	.63 ± 0.38	2.0	0.33 ~ 0.47	1000pcs	1000pcs
	1825	GRM43-4	4.6 ± 0.3	6.35 ± 0.4	2.0	.63 ± 0.38	2.0	0.47 ~ 1.0	1000pcs	1000pcs
	2220*	GRM44-1	5.6 ± 0.3	5.1 ± 0.4	2.0	.63 ± 0.38	2.0	0.47 ~ 1.0	1000pcs	1000pcs
	2225	GRM44	5.6 ± 0.3	6.35 ± 0.4	2.0	.63 ± 0.38	2.0	0.47 ~ 1.0	1000pcs	1000pcs

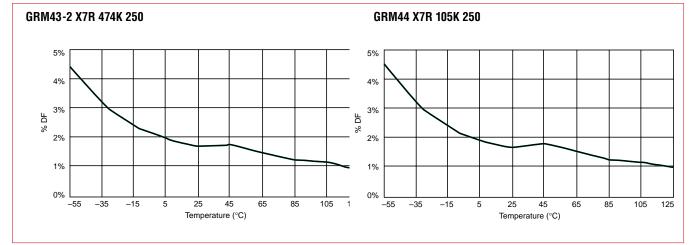
Preferred case size

PART NUMBERING SYSTEM

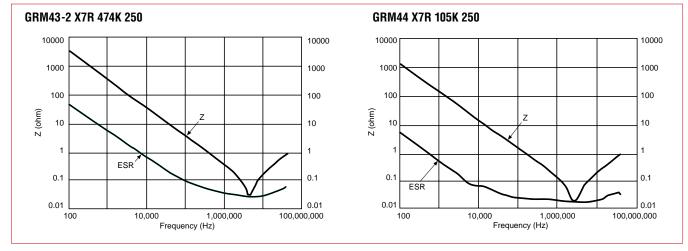
STANDARD PART NUMBER OFFERING


PART NUMBER	PART NUMBER
GRM43-2X7R334K250AL*	GRM44-1X7R474K250AL*
GRM43-2X7R474K250AL*	GRM44-1X7R105K250AL*
GRM43-4X7R474K250AL	GRM44X7R474K250AL
GRM43-4X7R105K250AL	GRM44X7R105K250AL

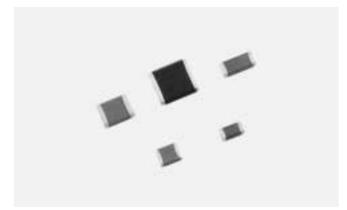
*Preferred Parts


SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TIP AND RING CAPACITOR DATA

muRata Innovator in Electronics GRM Series


TEMPERATURE COEFFICIENT OF CAPACITANCE

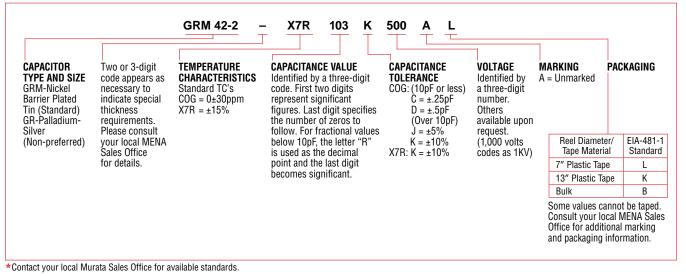
% DISSIPATION FACTOR VERSUS TEMPERATURE



SURFACE MOUNT MONOLITHIC CHIP CAPACITORS 500V RATED COG & X7R TYPE

GRM42-6/42-2/43-2/44-1 Series

These new surface mount components are designed to meet the growing demand for miniature, reliable chip capacitors, especially where high volume automation is required. Applications include solid state relays, telecom, instrumentation, modems, computer peripherals, and others.


FEATURES

- Standard E.I.A. sizes
 Up to 2X rated voltage tested
- Op to 2X rated voltage tested

BENEFITS

- Compatible with SMT equipment
- Improves long term reliability
- Suitable for harsh environments

PART NUMBERING SYSTEM

CHIP DIMENSIONS

EIA PREFERRED SIZE

Dimensions: mm	Size	EIA Code	L Length	W Width	T* Thickness	g (min.) Insulation	e (min.) Termination
y of the second se	GRM 42-6	1206	3.2 ± 0.2	1.5 ± 0.2	1.5 max.	1.0	0.25
	GRM 42-2	1210	3.2 ± 0.2	2.5 ± 0.2	1.5 max.	1.0	0.25
	GRM 43-2	1812	4.6 ± 0.3	3.2 ± 0.2	2.75 max.	2.0	0.25
	GRM 44-1	2220	5.6 ± 0.3	5.1 ^{+0.25}	2.75 max.	2.0	0.25

*Shown for maximum capacitance value.

Note: For greater than 500V see pages 130-131 of the ASC section.

All products on this page are available as standard through authorized Murata Electronics Distributors.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS 500V RATED COG TYPE

GRM42-6/42-2/43-2/44-1 Series

Type (EIA Co	ode)	GRM42-6 (1206)	GRM42-2 (1210)	GRM43-2 (1812)	GRM44-1 (2220)	
Char.		COG	COG	COG	COG	
ap. (pF)	Volt.	500	500	500	500	
ap. (pi)	0.5					
	0.5 0.75 1					
	1.5 2					
	3					
	5					
	6 7 8					
	9 10					
	11 12					
	13 15					
	8					
	20 22					
	24 27					
	30 33					
	36 39					
	43					
	51					
	62 68					
	75 82					
	100					
	120					
	150					
	180	{×^×^×^*				
	220		x^x^x)			
	270	{x x x x x }				
	330	{×××××				
	390 430	X_X_X_X				
	470	<u>k^x^x</u>]				
	560					
	680					
	820					
	1000					
	1200			····· k^x^x^1		
	1500 1600					
	1800 2000				XXXXXX	
	2200 2400			{×××××××	X X X X X	
	2700					
	3300				^xx_x^x_x]	
	3900 4300					
	1600					
	5600 6200				X^x^x^	
	6800 7500					
	8200					
	10000					
	12000					
	15000					

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*	Туре	Type Thickness: T (mm)		Taping (pcs./ф178mm reel)*	
GRM42-6	: 1.15 ± 0.1	1000	3000	GRM43-2	: 2.0 max.	1000	1000	
GRM42-2	: 1.35 ± 0.15	1000	2000	GRM44-1	: 2.0 max.	1000	1000	

Consult factory for thickness, reel quantity, and availability.

 $^{\ast}\varphi330mm$ reel is available on request.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS 500V RATED X7R TYPE

GRM42-6/42-2/43-2/44-1 Series

Type (EIA Code)	GRM42-6 (1206)	GRM42-2 (1210)	GRM43-2 (1812)	GRM44-1 (2220)	
Char.	X7R	X7R	X7R	X7R	
Volt. Cap. (pF)	500	500	500	500	
220 270 330					
390 470 560					
680 820					
1000 1200 1500					
1800 2200					
2700 3300 3900	XXXX				
4700 5600					
6800 8200 10000					
12000 15000 18000					
22000 27000		<u>[\$x\$x\$x</u>]			
33000 39000 47000					
68000 82000					
100000 120000					

THICKNESS AND PACKAGING TYPES/QUANTITY

Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*	Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)*
GRM42-6	: 1.15 ± 0.1	1000	3000	GRM43-2	2.0 max.	1000	1000
GRM42-2	: 1.15 ± 0.1	1000	3000	GRM44-1	. 2.0 max.	1000	1000
UNIII42-2	: 1.35 ± 0.15	1000	2000				

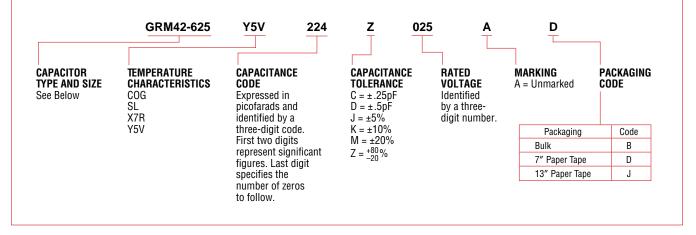
 $(x \times x) :$ Consult factory for thickness, reel quantity, and availability.

 $^{\ast}\varphi330mm$ reel is available on request.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS NICKEL BARRIER TERMINATION THIN TYPE

GRM40/42-6 Series

muRata


FEATURES

- This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- Large capacitance values enable excellent by-pass effects to be realized.
- Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

APPLICATIONS

Thin equipment such as IC cards

PART NUMBERING SYSTEM

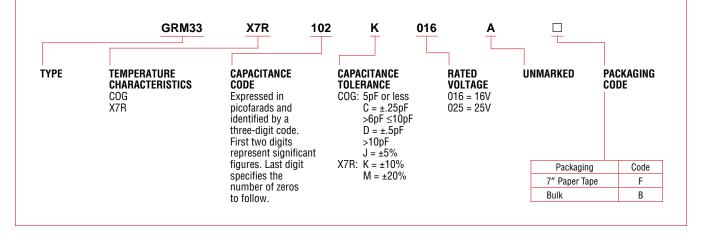
DIMENSIONS: mm


	Size	L Length	W Width	T Thickness	g (min.) Insulation	e (min.) Termination
$ \begin{array}{c c} & \bullet & \bullet & \bullet \\ \hline \bullet & & \bullet & \bullet \\ \hline \bullet & & & & \\ \hline \bullet & & $	GRM40-024	2.0 ± 0.1	1.25 ± 0.1	0.5 ⁺⁰ 0.2	0.7	0.2
	GRM42-625	3.2 ± 0.15	1.6 ± 0.15	0.6 max.	0.7	0.3

SPECIFICATIONS

Туре	Rated Voltage/Temp. Char.	COG	SL	X7R	Y5V
	50VDC	0.5 ~ 360	220 ~ 470	220 ~ 6,800	10,000
GRM40-024	25VDC	_	_	8,200 ~ 10,000	15,000 ~ 33,000
	16VDC	—	—	12,000 ~ 27,000	47,000 ~ 100,000
GRM42-625	25VDC	<u> </u>			150,000 ~ 220,000

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS ULTRA-MINIATURIZED TYPE


FEATURES

- Small chip size (L x W x T: 0.6 x 0.3 x 0.3mm)
- Terminations are made of metal highly resistant to migration.
- GRM33 type is suited to only reflow soldering.
- Stringent dimensional tolerances allow highly reliable,
- high speed automatic chip placements on PCBs. GRM33 Series are suited to miniature microwave
- module, portable equipment and high-frequency circuit.

APPLICATIONS

- Miniature microwave module
- Portable equipment
- High-frequency circuit

PART NUMBERING SYSTEM

DIMENSIONS AND PACKAGING TYPES/QUANTITY

e g e		EIA		D	Bulk				
	Туре	Type Code	L Length	W Width	T Thickness	e Termination	g (min.) Insulation	(pcs./bag)	Taping (pcs./ ф178mm reel)
	GRM33	0201	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	0.1 ~ 0.2	0.2	1000	15000

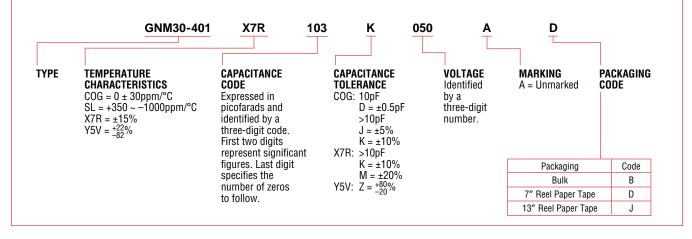
SPECIFICATIONS

Туре	Temperature Characteristics	Temperature Coefficient	Temperature Range	Reference Temperature
GRM33	COG	0 ± 30ppm/°C	–55 ~ +125°C	25°C
uniiioo	X7R	±15%	-55 ~ +125 6	23.0

CAPACITANCE RANGE TABLE (pF)

Type	Temperature	DC Rated Voltage (V)					
Type	Characteristics	25	16				
GRM33	COG	1 ~ 15	—				
unməə	X7R		100 ~ 1000				

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS CAPACITOR ARRAYS


FEATURES

- High density mounting due to mounting space saving
- Mounting cost saving (one placement instead of four)
- Four capacitors on one chip

APPLICATIONS

- Cellular phones, pagers
- Camcorders
- Personal computers
- AudioLCD

PART NUMBERING SYSTEM

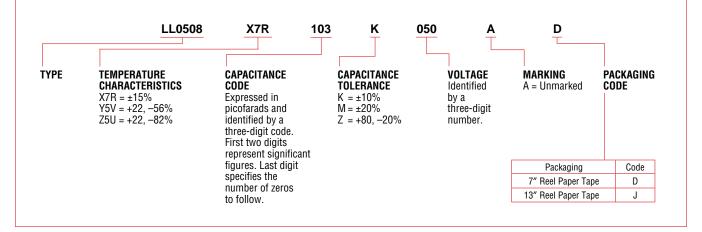
DIMENSIONS AND PACKAGING TYPES/QUANTITY

	- EIA		Dimensions: mm					Bulk	Taping (pcs./
Type Code	L Length	W Width	T Thickness	a	b	C		φ178mm reel)	
GNM30-401	1206	3.2 ± 0.15	1.6 ± 0.15	0.8 ± 0.1	0.2 ± 0.1	0.4 ± 0.05	0.8 ± 0.1	1000	4000

SPECIFICATIONS: pF

Туре	DC Rated	Temperature Characteristics							
туре	Voltage (V)	COG	X7R	Y5V					
	100	10 ~ 150	220 ~ 4700	680 ~ 4700					
011000 404	50	10 ~ 330	390 ~ 15000	22000 ~ 47000					
GNM30-401	25	_	18000	_					
	16	_	22000 ~ 100000	68000 ~ 150000					
Tempera	ture Range	−55 ~ +125°C	−55 ~ +125°C	−30 ~ +85°C					

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS LOW ESL WIDE WIDTH TYPE


FEATURES

Low ESL, good for noise reduction for high frequency
 Small, high capacitance

APPLICATIONS

- High speed microprocessor
- High frequency digital equipment

PART NUMBERING SYSTEM

DIMENSIONS: mm

Туре	L Length	W Width	T Thickness
LL0306	0.8 ± 0.1	1.6 ± 0.1	0.6 max.
LL0508	1.25 ± 0.1	2.0 ± 0.1	1.0 max.
LL0612	16.015	2.0 . 0.15	0.7 ± 0.1
LL0012	1.6 ± 0.15	3.2 ± 0.15	1.15 ± 0.1

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS LOW ESL WIDE WIDTH TYPE

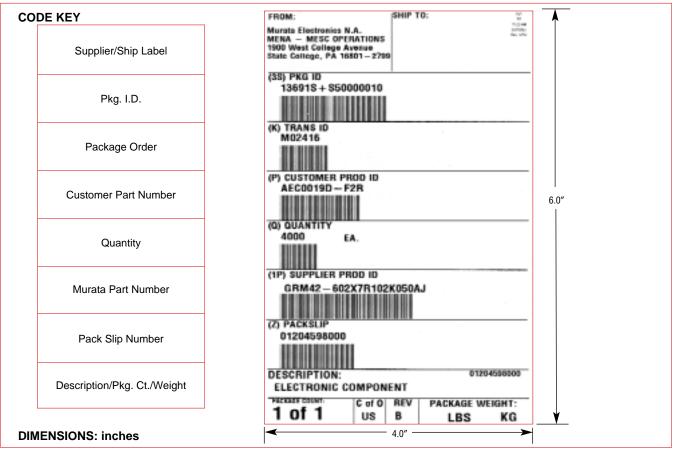
SURFACE MOUNT MONOLITHIC CHIP CAPACITORS

CAPACITANCE RANGE TABLE

Туре	LL0306						LL0508					LL0612												
Temp. Char.		X7R		Z	50		Y5V			X7R		Z	5U		Y5V			X7R		Z5U			Y5V	
DC Rated Volt. (V) Cap. (pF)	16	25	50	25	50	16	25	50	16	25	50	25	50	16	25	50	16	25	50	25	50	16	25	50
2200																								
2700																								
3300			-																					
3900																								
4700																				1				
5600																								
6800																								
8200																								
10000																								
12000							 							 										
15000																								
18000																								
22000							<u> </u>																	
27000																								
33000									╞┥															
39000																								
47000																								
56000									⊢⊢															
68000													-Ш.			LL.								
82000																			-1/-					
100000																	╞┥╞	$ \lambda $	N					
120000																		-17			77			
150000														┟╌└─┘╴	-L			ĽΔ.			\square			
180000 220000																	╞┥┝				Ø			
220000									+					┟╍╝╍				+			12			┝┻
330000									+								N							P
470000							<u> </u>									<u> </u>	12			0			Ø	12
560000		+					+		+					+				+		-64			12	
680000									+					+				+						
1000000																	H/A							
1000000																	141					ΥZ		

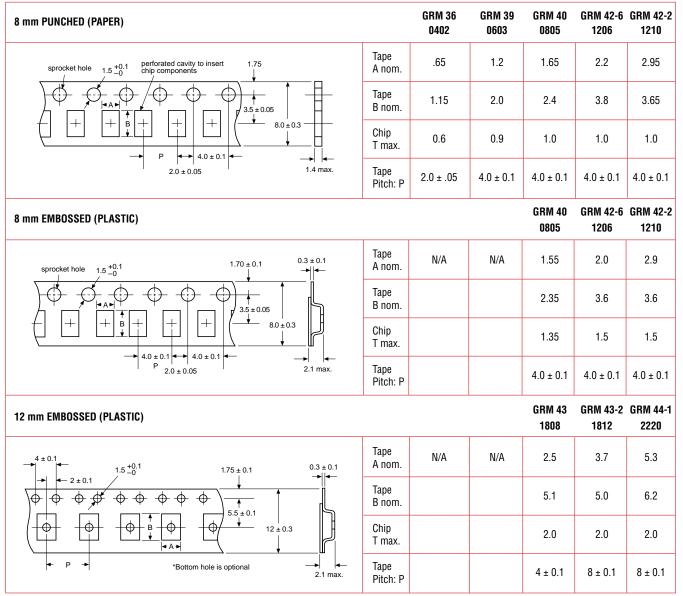
THICKNESS AND PACKAGING TYPES/QUANTITY

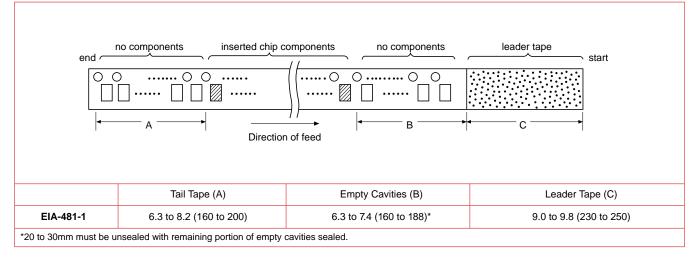
Туре	Thickness: T (mm)	Bulk (pcs./bag)	Taping (pcs./ф178mm reel)		
LL0306	. 0.6max.	1000	4000		
LL0508	. 1.0 max.	1000	4000		
LL0612	: 0.7 ± 0.1	1000	4000		
LLOOTZ	ZZ: 1.15 ± 0.1	1000	3000		


SURFACE MOUNT MONOLITHIC CHIP CAPACITORS STANDARD BAR CODE FORMAT AND SPECIFICATIONS

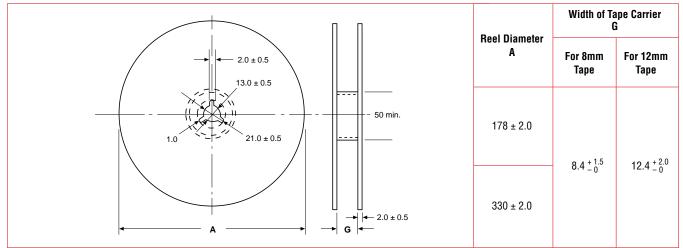
MENA STANDARD INNER PACKAGE LABEL

MENA STANDARD SHIPPING LABEL EIA-556 FORMAT


MENA STANDARD BULK CASE LABEL


SURFACE MOUNT MONOLITHIC CHIP CAPACITORS TAPE CARRIER DIMENSIONS

DIMENSIONS: mm


TAIL AND LEADER TAPE DIMENSIONS: mm

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS CHIPS-REEL AND BULK DIMENSIONS

REEL DIMENSIONS: mm

CHIP PACKAGING QUANTITIES

	Thickness	Bulk	Bulk	Таре						
Туре	(mm) max.	Bags	Case	7″ Paper	13″ Paper	7″ Embossed	13" Embossed			
GRM36	_	1000	50000	10000	50000	_	_			
GRM39	_	1000	15000	4000	10000		—			
GRM40										
GRM42-6	1.00	1000	—	4000	10000	—	—			
GRM42-2										
GRM42-6	1.25	1000				3000	10000			
GRM42-2	1.25	1000				0000				
GRM40	1.40	1000				3000	10000			
GRM42-2	1.50	1000	—	_	<u> </u>	2000	8000			
GRM43	1.50	1000	_			2000	8000			
GRM43-2	1.50	1000				1000	4000			
GRM44-1	1.50	1000				1000	4000			
GRM43	2.00	1000				2000	8000			
GRM43-2	2.00	1000	—	—	—	1000	4000			
GRM44-1										
GRM43-2	2.50	1000			_	500	_			
GRM44-1										
GRM43-2	2.75	2.75 1000				500	_			
GRM44-1										

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS CHIPS-REEL AND BULK DIMENSIONS

Innovator in Electronics GRM Series

BULK CASE PACKAGING

The state-of-the-art in automatic placement of surface mount monolithic ceramic chip capacitors has been greatly advanced with Murata Electronic's new bulk case packaging which offers an alternative to tape and reel. This new technique features a bulk case which can accommodate up to 50,000 pieces of GRM 36 (0402) and up to 15,000 pieces of GRM 39 (EIA 0603) capacitors which is considerably more than on a standard reel.

Additionally, this new packaging system facilitates standard bar coding and reduces storage and handling requirements. It also greatly reduces the possibility of mixing parts which is typical of other bulk packaging systems. Overall packaging placement costs are also greatly reduced. (Consult with placement equipment manufacturer to determine capability.)

FEATURES

- Prevents Mixture of Parts
- Reduces Labor Costs
- Reduces Stock Space
- Reduces Inventory Costs
- Improves Production Efficiency
- Reduces Waste

BULK CASE DIMENSIONS: mm

- Improved Inventory Control
 Bar Code Labeling
- Anti-Static Packaging
- Recyclable Packaging
- Placement Reliability
- Eliminates Leader/Tail Tape

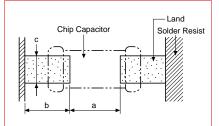
\\	Chip Size	Dimensions: mm			01./0
	(EIA)	L	W	т	Qty/Case
	0402	1.0	0.5	0.5	50000
31.5 36.0	0603	1.6	0.8	0.8	15000
	0005		4.05	0.6	10000
▲ 110	0805	2.0	1.25	1.25	5000

STORAGE OF CHIPS Cautions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Control Points

Storage environment must be at an ambient temperature of 5-40°C and


PCB DESIGN Cautions

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate. They are also more sensitive to mechanical and thermal stresses than leaded components. Excess solder fillet height can multiply these stresses and cause chip cracking.

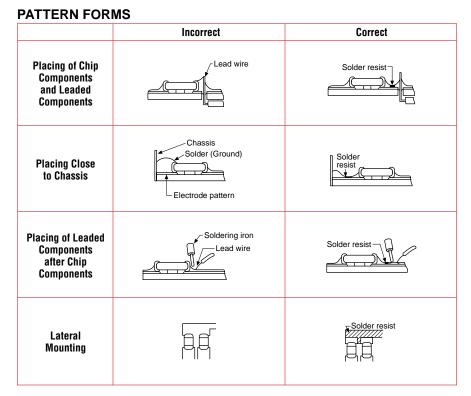
Control Points

When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

LAND DIMENSIONS

FLOW SOLDERING METHOD

an ambient humidity of 20–70% RH. Use chips within 6 months. If 6 months or more have elapsed, check solderability before use.


- For GR Series and GR500 Series, do not unpack the minimum package until immediately before use. After unpacking, re-seal promptly or store with a desiccant.
- Avoid mechanical shock (ex. falling) to the capacitor to prevent

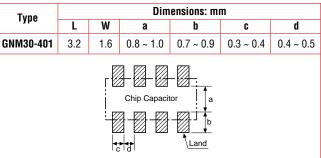
GRM Series mechanical cracking inside of the ceramic dielectric due to its own weight.

muRata

CIRCUIT DESIGN Cautions

The capacitors in this catalog are not safety recognized products.

Murata Designatior	ı	GRM39 GRM420 GRM706	GRM40 GRM425	GRM42-6 GRM430	LL0508	LL0612	GRM708	MA18
Dimensions: mm	L	1.6	2.0	3.2	1.25	1.6	2.0	1.4
	w	0.8	1.25	1.6	2.0	3.2	1.25	1.4
а		0.6 ~ 1.0	1.0 ~ 1.2	2.2 ~ 2.6	0.4 ~ 0.7	0.6 ~ 1.0	1.0 ~ 1.2	0.5 ~ 0.8
b		0.8 ~ 0.9	0.9 ~ 1.0	1.0 ~ 1.1	0.5 ~ 0.7	0.8 ~ 0.9	0.9 ~ 1.0	0.8 ~ 0.9
C		0.6 ~ 0.8	0.8 ~ 1.1	1.0 ~ 1.4	1.4 ~ 1.8	2.6 ~ 2.8	0.8 ~ 1.0	1.0 ~ 1.2



REFLOW SOLDERING METHOD

Murata Designatior	ı	GRM33	GRM36	GRM39 GRM420 GRM220	GRM40 GRM425 GRM225	GRM42-6 GRM430 GRM230	GRM42-2 GRM235	GRM43-2	GRM44-1	LL0306	LL0508	LL0612	GRM706
Dimensions: mm	L	0.6	1.0	1.6	2.0	3.2	3.2	4.5	5.7	0.8	1.25	1.6	1.6
	w	0.3	0.5	0.8	1.25	1.6	2.5	3.2	5.0	1.6	2.0	3.2	0.8
а		0.2 ~ 0.3	0.3 ~ 0.5	0.6 ~ 0.8	1.0 ~ 1.2	2.2 ~ 2.4	2.0 ~ 2.4	3.0 ~ 3.5	4.0 ~ 4.6	0.2 ~ 0.4	0.4 ~ 0.6	0.6 ~ 0.8	0.6 ~ 0.8
b		0.2 ~ 0.35	0.35~0.45	0.6 ~ 0.7	0.6 ~ 0.7	0.8 ~ 0.9	1.0 ~ 1.2	1.2 ~ 1.4	1.4 ~ 1.6	0.3 ~ 0.4	0.3 ~ 0.5	0.6 ~ 0.7	0.6 ~ 0.7
C		0.2 ~ 0.4	0.4 ~ 0.6	0.6 ~ 0.8	0.8 ~ 1.1	1.0 ~ 1.4	1.8 ~ 2.3	2.3 ~ 3.0	3.5 ~ 4.3	1.0 ~ 1.4	1.4 ~ 1.8	2.6 ~ 2.8	0.6 ~ 0.8

Murata Designation	1	GRM708	GRM710	MA18	MA28
Dimensions: mm	L	2.0	3.2	1.4	2.8
	w	1.25	2.5	1.4	2.8
а		1.0 ~ 1.2	2.2 ~ 2.5	0.4 ~ 0.8	1.8 ~ 2.1
b		0.6 ~ 0.8	0.8 ~ 1.0	0.6 ~ 0.8	0.7 ~ 0.9
C		0.8 ~ 1.0	1.9 ~ 2.3	1.0 ~ 1.2	2.2 ~ 2.6

GNM SERIES FOR REFLOW SOLDERING METHOD

Control Points

Choose a mounting postion that minimizes the stress imposed on the chip during flexing or bending the board.

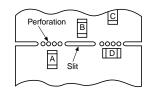
Component Direction

Incorrect Correct

Locate chip horizontally to the direction in which stress acts.

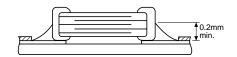
SOLDER PASTE PRINTING Cautions

Overly thick application of solder paste results in excessive fillet height solder.


This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.

Control Points


Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

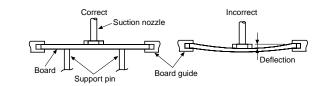
Chip Mounting Close to Board Separation Point

Chip arrangement: Worst $A - C - (B \simeq D)$ Best

Optimum Solder Amount for Reflow Soldering

MONOLITHIC CH

NPACITORS



CHIP PLACING Cautions

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips.
- The locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips.

Control Points

- Adjust the suction nozzle's bottom dead point by correcting warps in the board.
- Nozzle pressure for chip mounting must be a 1 to 3N static load.

Temperature

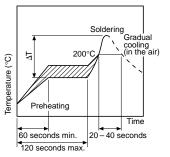
Differential

 $\Delta T \leq 190^{\circ}C$

 $\Delta T \leq 130^{\circ}C$

Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

REFLOW SOLDERING Cautions


Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips.

Control Points

When preheating, keep temperature differential, ΔT, within the range shown in Table 1. The smaller the ΔT, the less stress on the chip.

Standard Conditions for Reflow Soldering

Infrared Reflow

Vapor Reflow

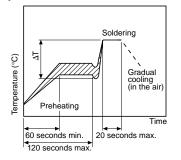
TABLE 1

Chip Size

GRM33/36/39/40/42-6

GRM420/425/430

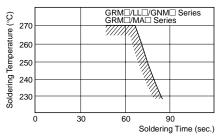
GRM220/225/230


LL0306/0508/0612

GRM706/708/MA18

GRM42-2/43-2/44-1

GRM235/GNM30-401


GRM710/MA28

maintain the temperature difference (ΔT) between the component and solvent within the range shown in Table 1.

When components are immersed in solvent after mounting, be sure to

Allowable Soldering Temperature and Time

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

INVERTING THE PCB Control Points

Make sure not to impose an abnormal mechanical shock on the PCB.

ADHESIVE APPLICATION Cautions

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered.
- Low viscosity adhesive causes chips to slip after mounting.

Control Points

The amount of adhesive must be more than dimension C shown in the drawing below to obtain enough

ADHESIVE CURING Cautions

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control Points

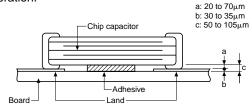
Control curing temperature and time in order to prevent insufficient hardening.

INVERTING THE BOARD Control Points

Make sure not to impose an abnormal mechanical shock on the PCB.

FLOW SOLDERING Cautions

- Sudden heating of the chip results in thermal distortion causing cracked chips.
- An excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.


Control Points

- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT, within the range shown in Table 2. The smaller the ΔT, the less stress on the chip.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.
- Do not apply flow soldering to chips not listed in Table 2.

TABLE 2

Chip Size	Temperature Differential
GRM39/40/42-6 GRM420/425/430 LL0508/0612 GRM706/708/MA18	$\Delta T \leq 150^{\circ} C$

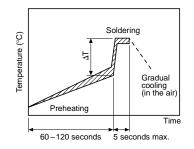
bonding strength.The chip's electrode thickness and land thickness must be taken into consideration.

LEADED COMPONENT INSERTION

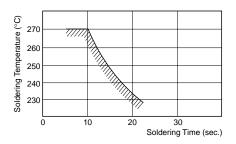
Cautions

If the PCB is flexed when leaded components (such as transformers and IC's) are being mounted, chips may crack and solder joints may break.

Control Points


Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

FLUX APPLICATION


Cautions

An excessive amount of flux generates a large quantity of

Standard Conditions for Flow Soldering

Allowable Soldering Temperature and Time

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

c: 50 to 105μm (c: 70 to 105μm)

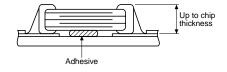
Adhesive must have a viscosity of

GR500 Series

a: 40 to 70µm

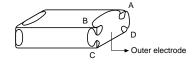
b: 30 to 35µm

500ps (at 25°C) min.

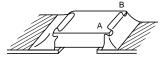

flux gas, causing deteriorated solderability.

Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently cleaned.

Control Points


- Apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Use flux with a halide content of 0.2wt% max. But do not use strongly acidic flux.
- Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

Optimum Solder Amount for Flow Soldering



Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

As a single chip

As mounted on substrate

muRata

Innovator in Electronics

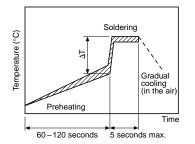
GRM Series

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS MECHANICAL CONSIDERATIONS

CORRECTION WITH A SOLDERING IRON For chip type capacitors except GRM200 Series

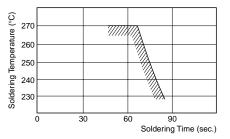
Cautions

Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips.

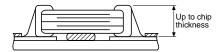

Control Points

When preheating, keep temperature differential, ΔT, within the range shown in Table 3. The smaller the ΔT, the less stress on the chip.

TABLE 3


Chip Size	Temperature Differential
GRM36/39/40/42-6 GRM420/425/430 LL0306/0508/0612 GRM706/708/MA18	$\Delta T \leq 190^\circ C$
GRM42-2/43-2/44-1 GNM30-401 GRM710/MA28	$\Delta T \leq 130^{\circ} C$

Standard Conditions for Soldering Iron Temperature



Allowable Time and Temperature for Making Corrections with a Soldering Iron

The accumulated soldering time/ temperature including reflow/flow soldering must be within the range shown below.

Optimum Solder Amount When Corrections Are Made Using a Soldering Iron

- When correcting chips with a soldering iron, no preheating is required if the chip is listed in Table 4 and the following conditions (Table 4) are met.
- Preheating should be performed on chips not listed in Table 4.

TABLE 4

Item	Conditions						
Chip Size	GRM36/39/40 GRM420/425 LL0306/0508 GRM706/708/MA18	GRM42-6 GRM430 LL0612 GNM30-401					
Temperature of Iron Tip	300°C max.	270°C max.					
Soldering Iron Wattage	20W	max.					
Diameter of Iron Tip	φ3mr	n max.					
Restriction	Do not allow the iron tip to dire	ectly touch the ceramic element.					

SOLDERING IRON METHOD For GRM200 Series

When solder GRM200 Series chip capacitor, keep the following conditions.

Item	Cond	itions						
Chip Type	GRM220	GRM225/230/235						
Pre-heating	No pre-heating is possible	$\Delta \leq 130^{\circ}$ C						
Temperature of Iron Tip	300°C max.							
Soldering Iron Wattage	20W	max.						
Diameter of Iron Tip	գ3mn	n max.						
Soldering Time	5 sec	. max.						
Solder Amount	\leq Chip thickness \leq $\frac{1}{2}$ of chip thickness							
Restriction	Do not allow the iron tip to dire	ctly touch the ceramic element.						

For Microstrip Types

- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

WASHING

Cautions

Excessive output of ultrasonic oscillation during cleaning causes PCB's to resonate, resulting in cracked chips or broken solder.

Control Points

Take note not to vibrate PCB's.

INSPECTION

Cautions

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints.

Control Points

Provide support pins on the back side of the PCB to prevent warping or flexing.

RESIN COATING

Control Points

When selecting resin materials, select those with low contraction.

BOARD SEPARATION (OR DEPANELIZATION) Cautions

Board flexing at the time of separation causes cracked chips or

broken solder.

Control Points

- Severity of stresses imposed on the chip at the time of board break is in the order of:
- Pushback < Slitter < V Slot < Perforator.
 Board separation must be performed using special jigs, not with hands.

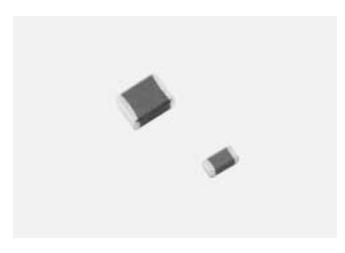
SURFACE MOUNT MONOLITHIC CHIP CAPACITORS SELECTION GUIDE

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS

DC250V ~ DC3.15kV, AC250V(r.m.s.)

Series	Rated	Cap.	Dir	nensions (n	nm)	Capacita	nce (pF)	Dout Number	Pack Qty. (pcs./reel)	EIA	Sample	
(Merit)	Voltage	E-step	L	W	T	min.	max.	Part Number	ϕ 178mm reel)	Size	Sample	
GHM1000			45.00	00.00	00.00	—	10	GHM1038SL100D3K	0000	1000	100	
(Low loss) S L (X7R)	DC3.15kV	E12	4.5 ± 0.3	2.0 ± 0.2	2.0 ± 0.3	12	82	GHM1038SLDDJ3K	2000	1808	S.	
			4.5 ± 0.3	3.2 ± 0.3	2.5 ⁺⁰ _{-0.3}	—	100	GHM1040SL101J3K	500	1812		
	DC2kV	E12	4.5 ± 0.3	3.2 ± 0.3	2.0 ⁺⁰ _{-0.3}	120	220	GHM1040SL UJ2K	1000	1012	1	
GHM1000	DC630V	E6	3.2 ± 0.2	1.6 ± 0.2	1.0 ⁺⁰ _{-0.3}	100	330	GHM1030R	4000	1206		
(Low loss) R (X7R)	DC030V	EU	5.2 ± 0.2	1.0 ± 0.2	1.25 ⁺⁰ _{-0.3}	470	1000	GHM1030R	3000	1200		
GHM1500			3.2 ± 0.2	1.6 ± 0.2	1.25 ⁺⁰ _{-0.3}	1000	10000	GHM1530B	3000	1206	-	
(High Cap.) B (X7R)			3.2 ± 0.3	2.5 ± 0.2	1.5 ⁺⁰ _{-0.3}	15000	22000	GHM1535B□□□K630	2000	1210	۷	
					1.5 ⁺⁰ _{-0.3}	33000	47000	GHM1540B	1000			
	DC630V	E6	4.5 ± 0.4	3.2 ± 0.3	2.0 ⁺⁰ _{-0.3}	_	68000	GHM1540B683K630	1000	1812	-	
					2.6 ⁺⁰ _{-0.3}	_	100000	GHM1540B104K630	500			
			5.7 ± 0.4	5.0 ± 0.4	2.0 ⁺⁰ _{-0.3}	_	150000	GHM1545B154K630	1000	2220		
			3.7 ± 0.4	5.0 ± 0.4	2.7 ⁺⁰ _{-0.3}	—	220000	GHM1545B224K630	500	2220	-	
GHM1500			00.00	1.05 . 0.0	1.0 ⁺⁰ _{-0.3}	1000	6800	GHM1525B	4000	0005	-	
(High Cap.) B (X7R)			2.0 ± 0.2	1.25 ± 0.2	1.25 ± 0.2	—	10000	GHM1525B103K250	3000	0805	-	
					1.0 ⁺⁰ _{-0.3}	15000	22000	GHM1530B	4000			
	DC250V	DC250V		3.2 ± 0.2	1.6 ± 0.2	1.25 ⁺⁰ -0.3	—	33000	GHM1530B333K250	3000	1206	1
			E6			1.6 ± 0.2	—	47000	GHM1530B473K250	2000		
	D0230V	EO	20.02	2.5 ± 0.2	1.5 ⁺⁰ _{-0.3}	—	68000	GHM1535B683K250	2000	1210	-	
			3.2 ± 0.3	2.3 ± 0.2	2.0 ⁺⁰ _{-0.3}	—	100000	GHM1535B104K250	1000	1210	V	
			4.5 ± 0.4	3.2 ± 0.3	2.0 ⁺⁰ _{-0.3}	—	150000	GHM1540B154K250	1000	1812		
			4.3 ± 0.4	3.2 ± 0.3	2.5 ⁺⁰ _{-0.3}	—	220000	GHM1540B224K250	500	1012	V	
			5.7 ± 0.4	5.0 ± 0.4	2.0 ⁺⁰ _{-0.3}	330000	470000	GHM1545B□□□K250	1000	2220	2	
GHM2100 B	AC250Vrms (Test Voltage	50	5.7 ± 0.4	2.8 ± 0.3	2.0 ± 0.3	10000	47000	GHM2143B	1000	2211	-	
	AC575V 60 sec.)	E3	5.7 ± 0.4	5.0 ± 0.4	2.0 ± 0.3	_	100000	GHM2145B104MAC250	1000	2220	2	
GHM2200 (Y Cap.) B	AC250Vrms (Test Voltage AC1500V 60 sec.)	E3	5.7 ± 0.4	2.8 ± 0.3	2.0 ± 0.3	470	4700	GHM2243B	1000	2211		
GHM3100 (X Cap.)	AC250Vrms SAFETY VDE,		5.7 ± 0.4	5.0 ± 0.4	2.0 ± 0.3	10000	22000	GHM3145X7R□□K-GB	1000	2220		
X 7 R	SEV, SEMKO recognized class X2	E3	5.7 ± 0.4	5.0 ± 0.4	2.7 ± 0.3	_	33000	GHM3145X7R333K-GB	500	2220		
GHM3000 (Y Cap.) X 7 R	AC250Vrms SAFETY VDE, SEV, SEMKO recognized class Y2, X1 and UL recognized LINE-BY-PASS	E6	5.7 ± 0.4	5.0 ± 0.4	2.0 ± 0.3	100	4700	GHM3045X7R□□□K-GC	1000	2220		

Nominal Capacitance (


CAPACITANCE STEP E-SERIES

E-3		1.0			2.2				4.7			
E-6	1	.0	1	1.5		2.2		.3	4.7		6.8	
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS 250VDC TO 3.15kVDC, SL, R & B TYPES

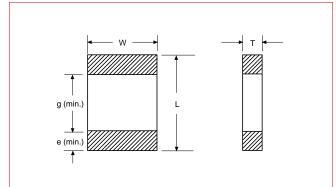
FEATURES

- A new multi-layer structure for small, surface-mountable devices capable of operating at high-voltage.
- Sn plated external electrodes allow mounting without silver compound solder.
- The GHM1030 type and 1525/1530 types for flow and reflow soldering. All other types for reflow soldering only.

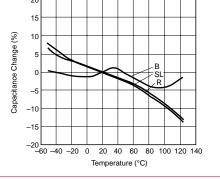
APPLICATIONS

GHM1000

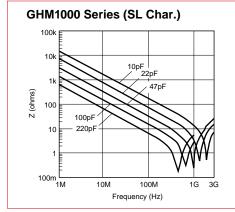
- Ideal use on high-frequency pulse circuit such as snubber circuit for switching power supply, DC-DC converter, ballast (inverter fluorescent lamp). (R Characteristics)
- Ideal for use as the ballast in liquid crystal back-lighting inverters. (SL Characteristics)

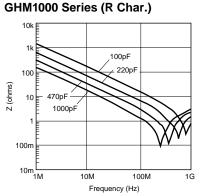

GHM1500

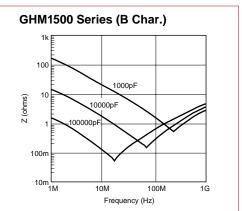
- Ideal use as hot-cold coupling for DC-DC converter.
- Ideal use on line filter and ringer detector for telephone, facsimile and modem.
- Ideal use on diode-snubber circuit for switching power supply.


PART NUMBERING SYSTEM

	GHM1040 SL	<u>121</u> J	2K	
CAPACITOR TYPE AND SIZE	TEMPERATURE CHARACTERISTICS Temperature Range SL, R, & B = -55 to $+125$ °C Maximum Capacitance Change SL = $+350$ to -1000 ppm/°C ($+20$ to $+85$ °C) R = $\pm15\%$ (-55 to $+125$ °C) B = $\pm10\%$ (-25 to $+85$ °C)	CAPACITANCE VALUE Expressed in picofarads and identified by a three-digit number. First two digits represent significant figures. Last digit specifies the number of zeros to follow.	CAPACITANCE TOLERANCE D = ±0.5pF J = ±5% K = ±10%	VOLTAGE 250 = 250VDC 630 = 630VDC 2K = 2KVDC 3K = 3.15KVDC


DIMENSIONS: mm





IMPEDANCE – FREQUENCY CHARACTERISTICS

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS 250VDC TO 3.15kVDC, SL, R & B TYPES

GHM1000/1500 Series

TEMPERATURE COMPENSATING TYPE SL Characteristic (+350 to -1000ppm/°C)

Part Number	Nominal	Capacitance	DC Rated		Di	mensions (m	m)		Packaging Qty.			
Fait Nulliper	Capacitance (pF)	Tolerance	Voltage (V)	L	W	Т	g	e	(pcs./reel)			
GHM1040SL121J2K	120											
GHM1040SL151J2K	150	. 50/	2k		20.02	0 0 +0			1000			
GHM1040SL181J2K	180	±5%	ZK		3.2 ± 0.3	$2.0^{+0}_{-0.3}$			1000			
GHM1040SL221J2K	220											
GHM1038SL100D3K	10	±0.5pF										
GHM1038SL120J3K	12											
GHM1038SL150J3K	15											
GHM1038SL180J3K	18											
GHM1038SL220J3K	22						4.5 ± 0.3			2.9	0.3	
GHM1038SL270J3K	27				2.0 ± 0.2	2.0 ± 0.3			2000			
GHM1038SL330J3K	33	±5%	3.15k		2.0 ± 0.2				2000			
GHM1038SL390J3K	39	±3 %										
GHM1038SL470J3K	47											
GHM1038SL560J3K	56											
GHM1038SL680J3K	68											
GHM1038SL820J3K	82											
GHM1040SL101J3K	100				3.2 ± 0.3	$2.5 ^{+0}_{-0.3}$			500			

*1k VDC product also available. Please contact us for further details.

HIGH DIELECTRIC CONSTANT TYPE R Characteristic (±15%)

Part Number	Nominal	Capacitance	DC Rated		Packaging Qty.				
	Capacitance (pF)	Tolerance	Voltage (V)	L	W	Т	g	e	(pcs./reel)
GHM1030R101K630	100								
GHM1030R151K630	150					1.0 ⁺⁰			4000
GHM1030R221K630	220					1.0 _{-0.3}			4000
GHM1030R331K630	330	±10%	630	3.2 ± 0.2	1.6 ± 0.2		1.5	0.3	
GHM1030R471K630	470								
GHM1030R681K630	680					1.25 ⁺⁰ _{-0.3}			3000
GHM1030R102K630	1000								

HIGH DIELECTRIC CONSTANT TYPE B Characteristic (±15% from -55 to +125°C; ±10% within -25 to +85°C)

Part Number	Nominal	Capacitance	DC Rated		Di	mensions (mr	n)		Packaging Qty.
r art Number	Capacitance (pF)	Tolerance	Voltage (V)	L	W	Т	g	е	(pcs./reel)
GHM1525B102K250	1000								
GHM1525B152K250	1500								
GHM1525B222K250	2200					1.0 ⁺⁰ -0.3			4000
GHM1525B332K250	3300			2.0 ± 0.2	1.25 ± 0.2	1.0 -0.3	0.7		4000
GHM1525B472K250	4700								
GHM1525B682K250	6800								
GHM1525B103K250	10000					1.25 ± 0.2			3000
GHM1530B153K250	15000					1.0 ⁺⁰ -0.3			4000
GHM1530B223K250	22000		250	3.2 ± 0.2	1.6 ± 0.2				
GHM1530B333K250	33000			0.2 2 0.2	1.0 1 0.2	1.25 ⁺⁰ -0.3	1.5		3000
GHM1530B473K250	47000					1.6 ± 0.2	1.5		2000
GHM1535B683K250	68000			3.2 ± 0.3	2.5 ± 0.2	1.5 ⁺⁰ -0.3			2000
GHM1535B104K250	100000			0.2 ± 0.0	2.5 ± 0.2	2.0 ⁺⁰ _{-0.3}			1000
GHM1540B154K250	150000			4.5 ± 0.4	3.2 ± 0.3		2.5		1000
GHM1540B224K250	220000			4.3 ± 0.4	3.2 ± 0.3	2.5 ⁺⁰ _{-0.3}	2.5		500
GHM1545B334K250	330000	. 100/		57.04	50.04	0 0 ±0	0.5	0.3	1000
GHM1545B474K250	470000	±10%		5.7 ± 0.4	5.0 ± 0.4	$2.0^{+0}_{-0.3}$	3.5	0.3	1000
GHM1530B102K630	1000								
GHM1530B152K630	1500								
GHM1530B222K630	2200								
GHM1530B332K630	3300			3.2 ± 0.2	1.6 ± 0.2	1.25 ⁺⁰ _{-0.3}			3000
GHM1530B472K630	4700						1.5		
GHM1530B682K630	6800								
GHM1530B103K630	10000								
GHM1535B153K630	15000		630	3.2 ± 0.3	2.5 ± 0.2				2000
GHM1535B223K630	22000			0.2 ± 0.0	2.0 ± 0.2	1.5 ⁺⁰ -0.3			2000
GHM1540B333K630	33000					1.0 -0.3			
GHM1540B473K630	47000			4.5 ± 0.4	3.2 ± 0.3		2.5		1000
GHM1540B683K630	68000			7.0 ± 0.4	0.2 ± 0.0	2.0 ⁺⁰ _{-0.3}	2.0		
GHM1540B104K630	100000					2.6 ⁺⁰ _{-0.3}			500
GHM1545B154K630	150000			67.04	50.04	2.0 ⁺⁰ _{-0.3}	0 E		1000
GHM1545B224K630	220000			5.7 ± 0.4	5.0 ± 0.4	2.7 ⁺⁰ _{-0.3}	3.5		500

Innovator in Electronics

GHM1000/1500 Series

			Specif	ication					
No.	lt	em	Temperature Compensating Type (SL Char.)				Test N	lethod	
1	Operating Temperatur	e Range	–55 to +125°C		_				
2	Dielectric Strength		No defects or abnormalities.		betweer	n the termi		hen voltage in Table is applied to 5 s, provided the charge/ 50mA.	
					Rated Voltage Test Voltage				
					N	More than I		120% of the rated voltage	
						630V		150% of the rated voltage	
						250V		200% of the rated voltage	
3	Insulation Resistance	(I.R.)	$C \ge 0.01 \mu F$: More than 100M $C < 0.01 \mu F$: More than 10000		The insulation resistance shall be measured with 500 ± 50 (250 \pm 50V in case of rated voltage: DC 250V) and within 60 \pm 5 s of charging.				
4	Capacitance	9	Within the specified tolerance		The cap	pacitance/Q	/D.F. shall be	e measured at 20°C at the	
5	Q/ Dissipation Factor (D.F.		$C \ge 30 pF: Q \ge 1000$ $C < 30 pF: Q \ge 400 + 20C$ C: Nominal Capacitance (pF)	D.F. ≤ 0.01 (R Char.) D.F. ≤ 0.025 (B Char.)	 frequency and voltage shown as follows: Temperature Compensating Type Frequency: 1 ± 0.2MHz Voltage: 0.5 to 5V(r.m.s.) High Dielectric Constant Type Frequency: 1 ± 0.2KHz Voltage: 1 ± 0.2V(r.m.s.) 			Туре) ре	
6	Capacitanco Temperatur Characteris	e	Temp. Coefficient +350 to -1000ppm/°C (Temp. Range: +20 to +85°C)	Cap. Change within ±15% (R Char.) Cap. Change within ±10% (B Char. for –25 to +85°C)	 Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (+20 to +85°C) the capacitance shall be within the specified tolerance for the temperature coefficient. 				
					Step Temperature (°C)				
						1		20 ± 2	
						2	Mir	n. Operating Temp. ±3	
						3		20 ± 2	
						4	Max	x. Operating Temp. ±2	
						5	• · · ·	20 ± 2	
					The r value shall Pretr Perfo	range of ca e within –59 I be within 1 reatment orm a heat	5 to +125°C the specified treatment at	ange compared to the 20°C (–25 to +85°C for B Char.)	
7	Adhesive Si of Terminat		No removal of the termination defects shall occur.	ns or other	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock			c solder. rection of the arrow. ther with an iron or using the nducted with care so that the of defects such as heat shock. $-10N, 10 \pm 1s$ Speed: 1.0mm/s	
					Fig. 1			Glass Epoxy Board	
8	Vibration Resistance	Capacitance	Within the specified tolerance		Solder the capacitor to the testing jig (glass epoxy board The capacitor shall be subjected to a simple harmonic m				
	Resistance	Q/D.F.	$\label{eq:constraint} \begin{array}{l} C \geq 30 p F : \ Q \geq 1000 \\ C < 30 p F : \ Q \geq 400 + 20C \\ C : \ Nominal \ Capacitance \ (pF) \end{array}$	D.F. ≤ 0.01 (R Char.) D.F. ≤ 0.025 (B Char.)	having a uniform frequen traverse	a total amp nly between ncy range, fi ed in approz eriod of 2 h	litude of 1.5r the approxir rom 10 to 55 ximately 1 m	a to a simple narmonic motion nm, the frequency being varied nate limits of 10 and 55Hz. The Hz and return to 10Hz, shall be in. This motion shall be applied utually perpendicular directions	

"room condition" Temperature: 15 to 35°C; Relative humidity: 45 to 75%; Atmosphere pressure: 86 to 106kPa

GHM1000/1500 Series

9 Deflection No cracking or marking defects shall occur. Solder the capacitor to the tector bill (class apoy b) for which (Fig. 2 and (Fig. 2 an	No.	lte	em	Specif Temperature Compensating Type (SL Char.)	ication High Dielectric Constant Type (R or B Char.)		Test N	lethod	
10 Solderability of Termination 75% of the terminations are to be soldered evenly and continuously. Immerse the capacitor at solution of a fland (US-solution) for 2 ± 0.5 s at 22 mm/s solution of 2 ± 0.5 s at 22 mm/s solution of 2 ± 0.5 s at 22 mm/s solution of 2 ± 0.5 s at 22 mm/s solution for 2 ± 0.5 s at 25 mm/s solution for 2 ± 0.5 s at 25 mm/s solution for 2 ± 0.5 s at 25 mm/s solution for 2 ± 0.5 s at 25 mm/s solution for 2 ± 0.5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0.5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0.5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0.5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solution for 2 ± 0 to 100 for 5 mm/s solut	9	Deflection		No cracking or marking defective $\phi 4.5$ $\phi 4$	L x W (mm) Dimensions (mm) a b c d 2.0 x 1.25 1.2 4.0 1.65 3.2 x 1.6 2.2 5.0 2.0 3.2 x 2.5 2.2 5.0 2.9 4.5 x 2.0 3.5 7.0 2.4	shown in Fi Then apply The solderin reflow mett soldering is	g. 2 using a eutecti a force in the directing shall be done eit od and shall be con- uniform and free con- uniform and free con- uniform and free con- uniform and free con- pressurize con- con- con- con- con- con- con- con-	c solder. tion shown in F her with an iro nducted with ca of defects such zing 	ig. 3. n or using the are so that the as heat shock.
b Soldering HeatChange QD,F. C \geq 30pF: Q \geq 1000 C $<$ 30pF: Q \geq 1000 D.F. \leq 0.21 (R Char.) D.F. \leq 0.22 (B Char.)Immerse the capacitor in eutectic solder solder solution at 2 \geq 0.3 Perform the full still for 24 \leq 2.5 at a transmitty of the full still for 24 \leq 2.5 at comparison of the full still for 24 \leq 2.5 at comparison of the full still for 24 \leq 2.5 at comparison of the full still for 24 \leq 2.5 at comparison of the supporting [ig (glass epoxy bit is for 24 \leq 2.5 at comparison of the full still for 24 \leq 2.6 the capacitor to the supporting [ig (glass epoxy bit is for 24 \leq 2.6 the capacitor is the supporting [ig (glass epoxy bit is for 24 \leq 2.6 the capacitor to the supporting [ig (glass epoxy bit is for 24 \leq 2.6 the capacitor is the supporting [ig (glass epoxy bit is for 24 \leq 2.6 the capacitor is the supporting [ig (glass epoxy bit is for 24 \leq 2.6 the capacitor is the supporting [ig (glass epoxy bit is for 24 \geq 2.6 the capacitor is the supporting [ig (glass epoxy bit is for 24 \geq 2.6 the capacitor is the supporting [ig (glass epox) bit is for 24 \geq 2.6 the capacitor is the supporting [ig (glass epox) bit is for 24 \geq 2.6 the full still for 24 \geq 2.7 the capacitor is the supporting [ig (glass epox) bit is for 24 \geq 0.1 the full still for 24 \geq 0.1 the full still for 24 \geq 0.1 the full still for 24 \geq 0.2 the full still for 24	10		of		o be soldered	and rosin (. Immerse in	e capacitor in a sol JIS-K-5902) (25% r eutectic solder solu	ution of ethano osin in weight ition for 2 ± 0.5	proportion).
$ \begin{array}{ c c c c c c } \hline $ U0.F. & C \ge 300F U \ge 1000 \\ C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \le 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline C \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline \hline C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline \hline C \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline \hline \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline \hline \hline \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline \hline \ C \ge 0.01 \mu F. More than 1000 dhms * \mu F \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	11	to Soldering			Within ±10%	Immerse th	e capacitor in eutec	tic solder solut	ion at 260 ± 5°C
*Preheating for more than 3.2 × 2.5 mm*Preheating for more than 3.2 × 2.5 mmDielectric CycleSite gift***********************************		Heat	Q/D.F.	$C < 30pF: Q \ge 400 + 20C$		Immersing Pretreatn Perform	speed: 25 ± 2.5mm nent for high dielec a heat treatment at	n/s tric constant ty 150 +9,°C for 6	pe
Strength Oct NM L. 1 100° C to 120°C 1 1 12 Temperature Cycle Capacitance Change Within ±2.5% or ±0.25pF (Whichever is larger) Within ±10% (R Char.) Within ±7.5% (B Char.) Fix the capacitor to the supporting ig (plass epoxy b shown in Fig. 4 using a cutectic solder. 100°C to 120°C Cycle Q/O.F. C ≥ 30pf: 0 ≥ 1000 C < 30pf: 0 ≥ 400 + 20C C < 0.01 µF. More than 1000 ohms • µF Fix the capacitor to the supporting ig (plass epoxy b shown in Fig. 4 using a cutectic solder. 11.R. C ≥ 0.01 µF. More than 1000 ohms • µF Fix the capacitor to the supporting temp. ±3 2 Room Temp. ±2 3 Max. Operating Temp. ±3 3 Max. Operating Temp. ±3 3 Max. Operating Temp. ±2 3 Max. O			I.R.			then let s	sit for 24 \pm 2 h at ro	oom condition.	
CycleChange(Whichever is larger)Within $\pm 7.5\%$ (B Char.)shown in Fig. 4 using a cutectic solder. $QD.F.$ C $\geq 30p: 0 \geq 1000$ C $< 30p: 0 \geq 400 + 20C$ C: Nominal Capacitance (pF) $D.F. \leq 0.01$ (R Char.)shown in Fig. 4 using a cutectic solder. $I.R.$ C $\geq 0.01\mu$.F: More than 1000 of ms • μ F $D.F. \leq 0.02$ (B Char.) $D.F. \leq 0.02$ (B Char.) $U.F. \leq 0.02$ (B Char.) $I.R.$ C $\geq 0.01\mu$.F: More than 1000 of ms • μ F $Tim for 24 \pm 2$ h at room condition, then measure See item 2. $Iielectric$ See item 2.See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. $Iielectric$ See item 2. See item 2. See item 2. I				See item 2.		1 100°C to 120°C 1 mi			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12								epoxy board)
Image: Interpretation of the section of the secting of the secting of the secting of the secti		-,	•	$C \ge 30 pF: Q \ge 1000$ C < 30 pF: Q ≥ 400 + 20C	D.F. ≤ 0.01 (R Char.)	Perform the listed in the Let sit for 2	e five cycles accord following table. 4 ± 2 h at room co	ing to the four ndition, then m	easure.
Dielectric Strength See item 2. Max Operating Temp. ±2 3 Max Operating Temp. ±2 4 Max Operating Temp. ±2 4 Max Operating Temp. ±2 4 Max Operating Temp. ±2			I.R.			1	Min. Operatin	g Temp. ±3	Time (min) 30 ± 3 2 to 3
(Steady State) Change (Whichever is larger) Within ±7.5% (B Char.) 95% for 500 ±245 h. Remove and let sit for 24 ± 2 h at room condition, the measure. 0/0.F. C ≥ 30pF: Q ≥ 350 C < 30pF: Q ≥ 275 + 5/2C C: Nominal Capacitance (pF) D.F. ≤ 0.01 (R Char.) D.F. ≤ 0.05 (B Char.) Perteratment for high dielectric constant type Perform a heat treatment at 150 ±0° C for 60 ± 5 m then let sit for 24 ± 2 h at room condition. 14 Life Capacitance Change Within ±3.0% or ±0.3pF (Whichever is larger) Within ±10% (R Char.) Within ±15% (B Char.) Apply the voltage in following table for 1000 ±40 h at maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. 14 Life C ≥ 0.01 µF: More than 100 ohms • µF C < 0.01 µF: More than 100 ohms • µF C < 0.01 µF: More than 100 ohms • µF C < 0.01 µF: More than 100 ohms • µF C < 0.01 µF: More than 100 ohms • µF C < 0.01 µF: More than 100 ohms • µF Pretreatment for high dielectric constant type Perform a heat treatment of high dielectric constant type P						3 4 Pretreatin Perform then let s	Max. Operatin Room T nent for high dielec a heat treatment at it for 24 ± 2 h at ro 2 E2 E2 E2 2 E2 E2 E2 4 4 E2 E2 E2 E2 4	g Temp. ±2 emp. tric constant ty 150 ^{±0} ₁₀ °C for 6 som condition. -Solder Resist	30 ± 3 2 to 3 pe 0 ± 5 min. and
Image: Constraint of the constr	13	(Steady			Within ±10% (R Char.) Within ±7.5% (B Char.)	95% for 50	0 + <u>24</u> h.		-
I.R. C ≥ 0.01 μF: More than 10M ohms • μF C < 0.01 μF: More than 1000M ohms then let sit for 24 ± 2 h at room condition. Dielectric Strength See item 2. then let sit for 24 ± 2 h at room condition. 14 Life Capacitance Change Within ±3.0% or ±0.3pF (Whichever is larger) Within ±10% (R Char.) Within ±15% (B Char.) Apply the voltage in following table for 1000 ⁺⁴⁸ / ₋₀ h at maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the maximum operating temperature ±3°C. Q/D.F. C ≥ 30pF: Q ≥ 350 C < 30pF: Q ≥ 275 + 5/2C C: Nominal Capacitance (pF) D.F. ≤ 0.02 (R Char.) D.F. ≤ 0.05 (B Char.) Apply the voltage in following table for 1000 ⁺⁴⁸ / ₋₀ h at maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the measure. The charge/discharge current is less than 50mA. IP retreatment for high dielectric constant type Apply test voltage for 60 ± 5 min. at test temperat Remove and let sit for 24 ± 2 h at room condition Dielectric Strength See item 2. See item 2.		State)	Q/D.F.	$C < 30 pF: Q \ge 275 + \frac{5}{2}C$		measure. ■ Pretreatn Perform	nent for high dielec a heat treatment at	tric constant ty 150 ⁺⁰ _10°C for 6	De
Strength Strength 14 Life Capacitance Change Within ±3.0% or ±0.3pF (Whichever is larger) Within ±10% (R Char.) Within ±15% (B Char.) Apply the voltage in following table for 1000 ⁺⁴⁸ / ₋₀ h at maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the measure. Q/D.F. C ≥ 30pF: Q ≥ 350 C < 30pF: Q ≥ 275 + 5/2C C: Nominal Capacitance (pF) D.F. ≤ 0.02 (R Char.) D.F. ≤ 0.05 (B Char.) Apply the voltage in following table for 1000 ⁺⁴⁸ / ₋₀ h at maximum operating temperature ±3°C. Remove and let sit for 24 ± 2 h at room condition, the The charge/discharge current is less than 50mA. IP Pretreatment for high dielectric constant type Apply test voltage for 60 ± 5 min. at test temperat Remove and let sit for 24 ± 2 h at room condition Dielectric Strength See item 2.			I.R.	$C \geq 0.01 \mu F$: More than 10M ($C < 0.01 \mu F$: More than 1000	ohms • μF M ohms	then let sit for 24 ± 2 h at room condition.			
Change(Whichever is larger)Within $\pm 15\%$ (B Char.)maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 h at room condition, the measure.Q/D.F.C $\geq 30pF: Q \geq 350$ C $< 30pF: Q \geq 275 \pm 5/2C$ C: Nominal Capacitance (pF)D.F. ≤ 0.02 (R Char.) D.F. ≤ 0.05 (B Char.)maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 h at room condition, the measure. The charge/discharge current is less than 50mA.I.R.C $\geq 0.01 \mu$ F: More than 10M ohms • μ F C $< 0.01 \mu$ F: More than 1000M ohmsPretreatment for high dielectric constant type Apply test voltage for 60 ± 5 min. at test temperat Remove and let sit for 24 ± 2 h at room conditionDielectric StrengthSee item 2.Rated VoltageTest Voltage More than DC1kV			Strength	See item 2.					
U/D.F. $C \ge 30pr: 0 \ge 350$ $C < 30pF: 0 \ge 275 + 5/2C$ $C < 30pF: 0 \ge 275 + 5/2C$ $C : Nominal Capacitance (pF)D.F. \le 0.02 (R Char.)measure.The charge/discharge current is less than 50mA.I.R.C \ge 0.01 \mu F: More than 10M ohms • \mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F: More than 1000M ohms\mu FC < 0.01 \mu F\mu FC <$	14	Life				maximum o	perating temperatu	ıre ±3°C.	-
$\frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. \text{ More than 1000M ohms}} = \frac{1}{C} = 0.01 \mu \text{F}. Mo$			Q/D.F.	$C < 30 pF: Q \ge 275 + \frac{5}{2}C$	$D.F. \leq 0.02$ (R Char.) D.F. ≤ 0.05 (B Char.)	measure. The charge/ ■ Pretreatn	/discharge current i nent for high dielec	s less than 50r tric constant ty	nA. pe
Strength Strength			I.R.			Apply test voltage for 60 ± 5 min. at test t			mperature. ndition.
250V 150% of the rated v				See item 2.			e than DC1kV 630V	Rated voltag 120% of the	e rated voltage

"room condition" Temperature: 15 to 35°C; Relative humidity: 45 to 75%; Atmosphere pressure: 86 to 106kPa

Innovator in Electronics

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS CERAMIC CHIP CAPACITORS SAFETY STANDARD APPROVED-250VAC

GHM2143/2243

- NOT safety approved. Made to the standards of the electrical appliance and material control law of Japan, separated table 4.
- Rated voltage: 250VAC
- Test voltage
- GHM2243: 1500VACrms, 60 sec. GHM2143: 575VACrms, 60 sec.

GHM3045

- Safety approved: VDE, SEV, SEMKO, BSI, and UL
- Rated voltage: 250VAC
- Test voltage: 1500VACrms, 60 sec.
- Recognized as X1/Y2 by IEC384-14 2nd ed. (EN132400) and as line by-pass by UL1414

GHM3145

- Safety approved: VDE, SEV, SEMKO
- Rated voltage: 250VAC
- Test voltage: 1075VDC, 60 sec.
- Recognized as X2 by IEC384-14 2nd ed. (EN132400)
- X7R 101 κ GHM3045 GC _ CAPACITOR TEMPERATURE **CAPACITANCE VALUE** CAPACITANCE VOLTAGE TYPE AND **CHARACTERISTICS** Expressed in picofarads TOLERANCE GB or GC: for SIZE Temperature Range and identified by a GHM3000 listed $K = \pm 10\%$ B = -25 to +85°C designation AC250: for three-digit number. $M = \pm 20\%$ X7R = -55 to +125°C First two digits represent significant figures. Last Maximum Capacitance Change GHM2000 rating over temperature range digit specifies the number $B = \pm 10\%$ of zeros to follow. $R = \pm 15\%$

DIMENSIONS: mm

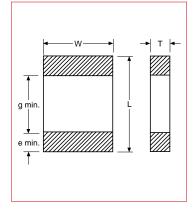
FEATURES

compound solder.

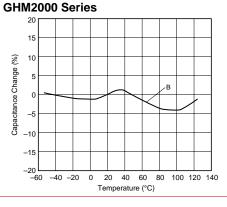
facsimile, modem

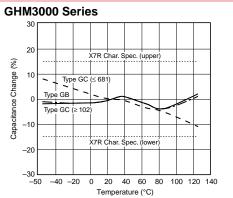
PART NUMBERING SYSTEM

Reflow soldering

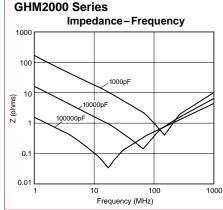

APPLICATIONS

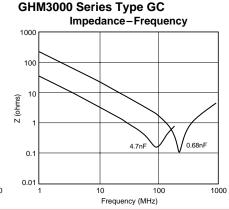
Chip monolithic ceramic capacitor for AC line

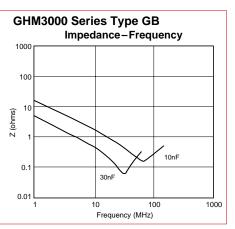

Sn plated external electrodes allow mounting without silver


(GHM2000) on switching power supply, ballast, telephone,

Ideal use for X/Y capacitor (GHM3000) or noise filter




CAPACITANCE – TEMPERATURE CHARACTERISTICS



FREQUENCY CHARACTERISTICS

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS CERAMIC CHIP CAPACITORS SAFETY STANDARD APPROVED-250VAC

muRata

GHM2000/3000 Series

GHM21 (Line to Line Capacitor) NOT Safety Approved

De d Namber	Nominal Capacitance			Di	AC Rated	Packaging Quantity			
Part Number	Capacitance (pF)	Tolerance	L	W	Т	g	e	Voltage [V(r.m.s.)]	(pcs/reel)
GHM2143B103MAC250	10000		5.7 ± 0.4						
GHM2143B223MAC250	22000	+20%		2.8 ± 0.3	2.0 ± 0.3	3.5	0.3	250	1000
GHM2143B473MAC250	47000	±20%	5.7 ± 0.4		2.0 ± 0.3	5.5	0.5		1000
GHM2145B104MAC250	100000			5.0 ± 0.4					

GHM22 (Line to Earth Capacitor) NOT Safety Approved

De d New Leve	Nominal	Capacitance		Dimensions: mm				AC Rated	Packaging Quantity
Part Number	Capacitance (pF)	Japacitalice	L	w	т	g	e	Voltage [V(r.m.s.)]	(pcs/reel)
GHM2243B471MAC	250 470		5.7 ± 0.4		2.0 ± 0.3	3.5	0.3	250	1000
GHM2243B102MAC	250 1000	±20%		2.8 ± 0.3					
GHM2243B222MAC	250 2200	±20 /0		2.0 ± 0.3					
GHM2243B472MAC	250 4700								

GHM3045 (X1, Y2)

	Nominal	Capacitance		Di	mensions: mm			Rated	Packaging Quantity
Part Number Ca	Capacitance (pF)	Tolerance	L	W	т	g	e	Voltage (VAC)	(pcs/reel)
GHM3045X7R101K-GC	100								
GHM3045X7R151K-GC	150				2.0 ± 0.3				1000
GHM3045X7R221K-GC	220			5.0 ± 0.4		4.0	0.3	250	
GHM3045X7R331K-GC	330								
GHM3045X7R471K-GC	470								
GHM3045X7R681K-GC	680	±10%	5.7 ± 0.4						
GHM3045X7R102K-GC	1000								
GHM3045X7R152K-GC	1500								
GHM3045X7R222K-GC	2200								
GHM3045X7R332K-GC	3300								
GHM3045X7R472K-GC	4700								

GHM3145 (X2)

De d Namb en	Nominal	Capacitance		Di	mensions: m	m		Rated	Packaging Quantity (pcs/reel)
Part Number	Capacitance (pF)	Tolerance	L	w	т	g	e	Voltage (VAC)	
GHM3145X7R103K-GB	10000		5.7 ± 0.4	5.0 ± 0.4		4.0	0.3	250	1000
GHM3145X7R153K-GB	15000	±10%			2.0 ± 0.3				
GHM3145X7R223K-GB	22000	±10/0			0.4				
GHM3145X7R333K-GB	33000				2.7 ± 0.3				500

APPROVAL STANDARDS AND RECOGNIZED NUMBERS GHM3045 GHM3145

	Standard Number	Recognized Number
UL	UL1414 (Line By Pass)	E37921
SEMKO	IEC384-14 2nd Edition	9614021 01
SEV		96.1 10333.02
VDE	(EN132400) CLASS X1/Y2	94671
BSI	ULA33 X1/12	228163

	Standard Number	Recognized Number
SEMKO	IEC384-14 2nd Edition	9614020 01
SEV (EN132400)		96.1 10333.02
VDE	CLASS X2	94729

muRata Innovator in Electronics

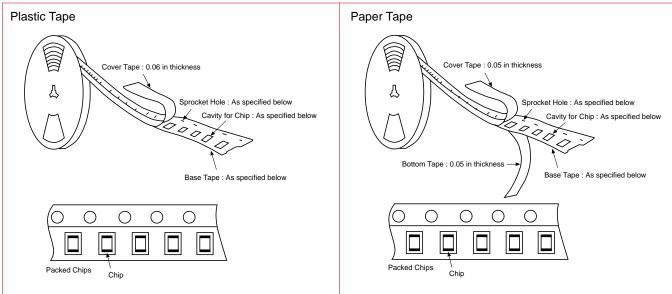
GHM2000/3000 Series

No.	Ite	em	Specification	Test	Method	
1	Operating Temp	erature Range	GHM2000: -25 to +85°C GHM3000: -55 to +125°C	_		
2	2 Dielectric Strength		No defects or abnormalities.	No failure shall be observed when voltage as table is applied between the terminations for 60 ± 1 s, provided the charge/discharge current is less than 50mA.		
					Test Voltage	
				GHM21	AC575V(r.m.s.) AC1500V(r.m.s.)	
				GHM3000 Type GB	1075VDC	
				GHM3000 Type GC	AC1500V(r.m.s.)	
3	Insulation Resis	tance (I.R.)	GHM2000: >2000M ohms GHM3000: >6000M ohms	The insulation resistance shall b within 60 ± 5 s of charging.	e measured with 500 \pm 50V and	
4	Capacitance		Within the specified tolerance.	The capacitance/D.F. shall be me 1 \pm 0.2kHz and a voltage of 1 \pm	easured at 20°C at a frequency of	
5	Dissipation Fact	or (D.F.)	0.025 max.		0.2V(1.111.S.)	
6	Capacitance Ten Characteristics	nperature	Cap. Change GHM2000: ±10% GHM3000: ±15%	The range of capacitance change within -25 to $+85^{\circ}C$ (-55 to $+12$ within the specified range. Pretreatment Perform a heat treatment at 150 let sit for 24 ± 2 h at room cond	25°C for GHM3000) shall be ±1°C for 60 ± 5 min. and then	
7	Discharge Test (Application: GHM22□□)	Appearance	No defects or abnormalities.	As in figure below, discharge is from the capacitor(Cd) charged		
	(Application:	I.R.	More than 1000M ohms.		·Wv]	
	Type GC)	Dielectric Strength	See item 2.			
				Ct: Capacitor under test Cd: 0.001 µ.F R1: 1000 ohms R2: 100M ohms R3: Surge resistance		
ð	8 Adhesive Strength of Termination		No removal of the terminations or other defects shall occur.	Fig. 1 using a eutectic solder. The direction of the arrow. The sold iron or using the reflow method	ering shall be done either with an	
9	Vibration	Capacitance	Within the specified tolerance.	Solder the capacitor to the test j		
	Resistance		0.025 max.	The capacitor shall be subjected having a total amplitude of 1.5m uniformly between the approxim frequency range, from 10 to 55 traversed in approximately 1 mil for a period of 2 h in each of 3 r (total of 6 h).	ann, the frequency being varied hate limits of 10 and 55Hz. The Hz and return to 10Hz, shall be n. This motion shall be applied mutually perpendicular directions	
10	10 Deflection		No cracking or marking defects shall occur.	Solder the capacitor to the testin	g jig (glass epoxy board) shown	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Capacitance meter	Idering shall be done either with od and shall be conducted with orm and free of defects such as zing .0mm/s	
11	Solderability of	Termination	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solut rosin (JIS-K-5902) (25% rosin i Immerse in eutectic solder soluti Immersing speed: 25 ± 2.5mm/s	ion for 2 ± 0.5 s at $235 \pm 5^{\circ}$ C.	

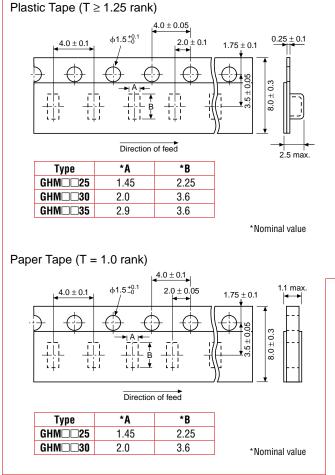
Innovator in Electronics

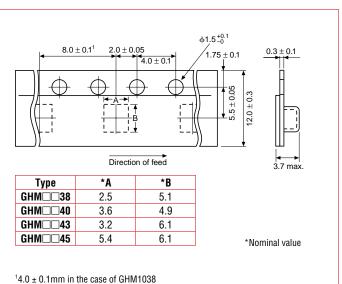
muRata

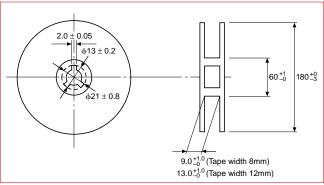
GHM2000/3000 Series


No.	lt	em	Specification		Test Method			
12	Resistance to Soldering Heat I.R.		Within ±10%	Preheat the capacitor solder solution at 260	± 5°C for 10 ± 1 s.			
			GHM2000: >2000M ohms GHM3000: >1000M ohms	condition for 24 ± 2 h Immersing speed: 25 Pretreatment				
		Dielectric Strength	See item 2.	Perform a heat treatment at $150 \pm 0 \\ \pm 10 \\ ^{\circ}$ C for 60 \pm 5 min. and then let sit for 24 \pm 2 h at room condition. *Preheating				
					Temperature 100°C to 120°C 170°C to 200°C	Time 1 min 1 min		
13	Temperature Cycle	Capacitance Change	GHM2000: within ±7.5% GHM3000: within ±15%	Fix the capacitor to the shown in Fig. 4 using	a eutectic solder.	,		
		D.F.	GHM2000: 0.025 max. GHM3000: 0.05 max.	Perform the five cycle listed in the following Let sit for 24 ± 2 h at				
		I.R.	GHM2000: >2000M ohms GHM3000: >3000M ohms	Step 1	Temperature (°C) Operating Temp. ±3	Time (min)		
		Dielectric Strength	See item 2.	2 3 Max	Room Temp. Operating Temp. ±2 Room Temp.	2 to 3 30 ± 3 2 to 3		
				Pretreatment Perform a heat treatm let sit for 24 ± 2 h at r 22 ± 22 r22 t22 Glass Epo	Com condition.			
14	Humidity (Steady State)	Capacitance Change	Within ±15%	Sit the capacitor at 40 500 $^{+24}_{-0}$ h.		-		
		D.F.	0.05 max.		Remove and let sit for 24 ± 2 h at room condition, then meas Pretreatment			
		I.R.	GHM2000: >1000M ohms GHM3000: >3000M ohms	Perform a heat treatment at $150 \pm 0_{10}^{+0}$ °C for 60 ± 5 min. and the let sit for 24 ± 2 h at room condition.				
		Dielectric Strength	See item 2.					
15	Life	Capacitance Change	GHM2000: ±15% GHM3000: ±20%	GHM2000: Apply volta and let sit for 24 ± 2 h charge/discharge curr	at room condition,	then measure. The		
		D.F.	0.05 max.		Test Time	Test Voltage		
		I.R.	GHM2000: >1000M ohms GHM3000: >3000M ohms	GHM21 GHM22	1000 ⁺⁴⁸ h 1500 ⁺⁴⁸ h	AC300V(r.m.s.) AC500V(r.m.s.)*		
		Dielectric Strength	See item 2.	voltage is i AC425V(r.n	h hour the voltage is 0.1 s. 60 ± 5 min. at test to bltage 100 (9 tor shall be 90 Type GC: 5kV) 50 ralue means 30 t times. Then lied to life test.	increased to emperature. $\frac{1}{12} = 1.2 \mu s = 1.67T$ $\frac{1}{12} = 50 \mu s$ $\frac{1}{12} = 50 \mu s$ $\frac{1}{12} = \frac{1}{12} $		
16	Humidity	Appearance	No marking defects.	Apply the rated voltage	e at 40 ± 2°C and rel	ative humidity 90 to		
	Loading	Capacitance Change	Within ±15%	95% for 500 ⁺²⁴ h. Rer condition, then measu Pretreatment	nove and let sit for 2	4 ± 2 h at room		
		D.F.	0.05 max.		60 ± 5 min. at test to			
		D.F. I.R.	0.05 max. GHM2000: >1000M ohms GHM3000: >3000M ohms	Remove and let sit for				

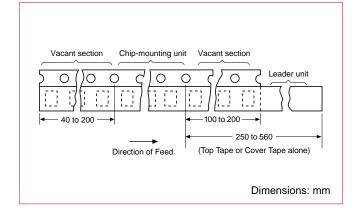
"room condition" Temperature: 15 to 35°C; Relative humidity: 45 to 75%; Atmosphere pressure: 86 to 106kPa


SURFACE MOUNT MONOLITHIC CHIP CAPACITORS HIGH-VOLTAGE CHIP MONOLITHIC CERAMIC CAPACITORS


PACKAGING


TAPE CARRIER DIMENSIONS: mm

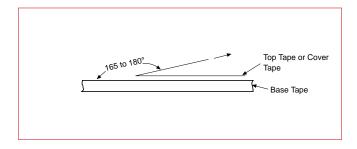
Note: Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.


REEL DIMENSIONS: mm

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS MECHANICAL CONSIDERATIONS

muRata Innovator in Electronics GHM Series

Part of the leader and part of the empty tape shall be attached to the end of the tape as follows.


The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.

Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.

The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.

Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.

Peeling off force: 0.1 to 0.7N in the direction shown below.

OPERATING VOLTAGE

Be sure to use a capacitor only within its rated operating voltage range. When DC-rated capacitors are to be used in AC or ripple current signal circuits, be sure to maintain the Vp-p value of the applied voltage signal within the rated voltage range.

OPERATING TEMPERATURE AND SELF-GENERATED HEAT

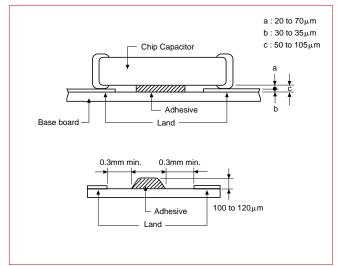
Keep the surface temperature of a capacitor within the rated operating temperature range. Be sure to take into account the heat produced by the capacitor itself. When a capacitor is used in a high-frequency circuit, pulse signal circuit or the like, it may produce heat due to dielectric loss. Keep such self-generated heat below 20°C. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

OPERATING AND STORAGE ENVIRONMENT

Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present and avoid exposure to moisture.

Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded, or molded product in the intended equipment.

Store the capacitors where the temperature and relative humidity are 5 to 40° C and 20 to 70%RH. Use capacitors within 6 months.


VIBRATION AND IMPACT

Do not expose a capacitor to excessive shock or vibration during use.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the product is used.

MOUNTING OF CHIPS

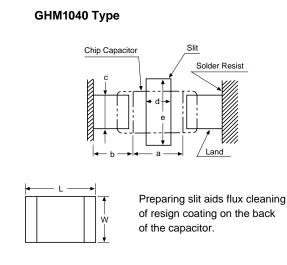
Termination thickness of chip capacitor and desirable thickness of adhesives applied

MECHANICAL SHOCK OF THE CHIP PLACER

When the positioning claws and pick up nozzle are worn, the load is applied to the chip while positioning is concentrated to one position, thus causing cracks, breakage, faulty positioning accuracy, etc.

Careful checking and maintenance are necessary to prevent unexpected trouble.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS MECHANICAL CONSIDERATIONS



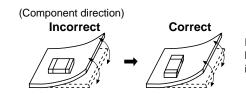
CONSTRUCTION OF BOARD PATTERN

After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction

resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

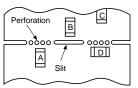
CONSTRUCTION AND DIMENSIONS OF PATTERN

Flow Soldering					
LxW	а	b	C		
3.2 x 1.6	2.2 ~ 2.6	1.0 ~ 1.1	1.0 ~ 1.4		

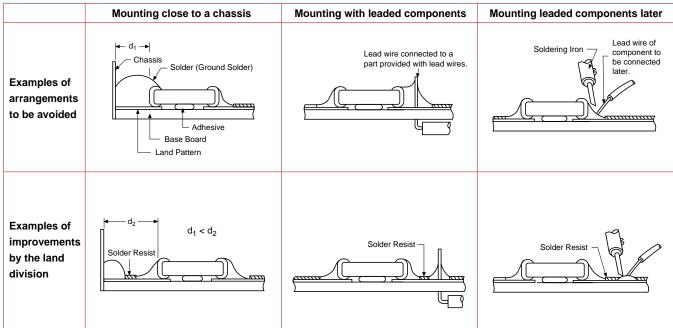

Reflow Soldering

	tonon concornig					
L x W	а	b	C	d	e	
3.2 x 1.6	2.2 ~ 2.4	0.8 ~ 0.9	1.0 ~ 1.4	1.0 ~ 2.0	3.2 ~ 3.7	
3.2 x 2.5	2.0 ~ 2.4	1.0 ~ 1.2	1.8 ~ 2.3	1.0 ~ 2.0	4.1 ~ 4.6	
4.5 x 2.0	2.8 ~ 3.4	1.2 ~ 1.4	1.4 ~ 1.8	1.0 ~ 2.8	3.6 ~ 4.1	
4.5 x 3.2	2.8 ~ 3.4	1.2 ~ 1.4	2.3 ~ 3.0	1.0 ~ 2.8	4.8 ~ 5.3	
5.7 x 5.0	4.0 ~ 4.6	1.4 ~ 1.6	3.5 ~ 4.8	1.0 ~ 4.0	6.6 ~ 7.1	

Dimensions: mm


LAND LAYOUT FOR CROPPING PC BOARD

Design layout of components on the PC board to minimize the stress imposed on the wrap or flexure of the board.

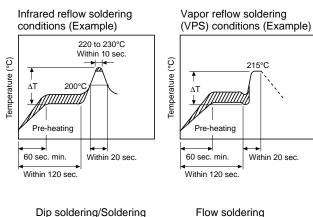

Place the component lateral to the direction in which stress occurs.

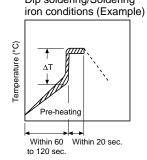
(Component layout close to board break)

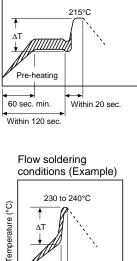
Susceptibility to stress is in the order of: A > C > B \simeq D

LAND LAYOUT TO PREVENT EXCESSIVE SOLDER

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS SOLDERING CONSIDERATIONS


Pre-heat conditions and examples

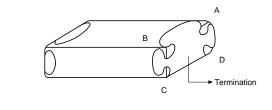

Carefully perform pre-heating so that temperature difference (ΔT) between the solder and component surface should be in the following range.


Chip Size/ Soldering method	3.2 x 1.6mm	All except 3.2 x 1.6mm
Reflow method or Soldering iron method	$\Delta T \leq 190^{\circ}C$	$\Delta T \leq 130^{\circ}C$
Flow method or Dip Soldering method	$\Delta T \leq 150^{\circ}C$	—

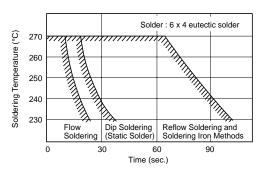
When components are immersed in solvent after mounting, pay special attention to maintain the temperature difference within 100°C. When correcting chips with a soldering iron, no pre-heating is required if the following conditions are met. (Pre-heating should be performed for chip size not listed in the following table.)

Item	Conditions
Chip size	3.2 x 1.6mm
Temperature of iron-tip	270°C max.
Soldering iron wattage	20W max.
Diameter of iron-tip	ϕ 3.0mm max.
Soldering time	3 sec. max.
Caution	Do not allow the iron-tip to directly touch the ceramic element.

Within 60 Within 5 sec. to 120 sec.


Pre-heating

CARE FOR MINIMIZING LOSS OF THE TERMINATIONS


Limit of losing effective area of the terminations and conditions needed for soldering

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that after any possible loss of the effective area on the terminations, the remaining terminations will cover a minimum surface area of 25% on all edge lengths A-B-C-D of part with A, B, C, D, shown in the Figure below.

Soldering Allowance Time

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

SURFACE MOUNT MONOLITHIC CHIP CAPACITORS SOLDERING CONSIDERATIONS

FLUX AND SOLDER

Use rosin-type flux and do not use a highly acidic flux (any containing a minimum of 0.2wt% chlorine).

Use 6 x 4 eutectic solder, or 5 x 5 solder. (Do not use solder with silver.)

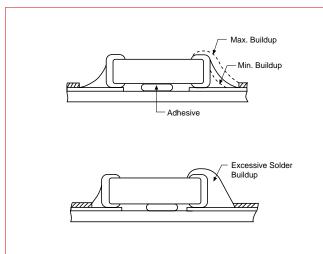
SOLDER BUILDUP

Flow soldering and iron soldering

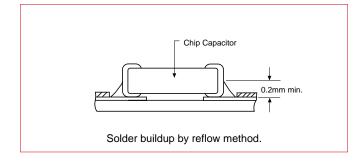
Use as little solder as possible, and confirm that the solder is securely placed.

Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.


To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less. Rinsing time: 5 minutes maximum.


RESIN COATING

When selecting resin materials, select those with low contraction and low moisture absorption coefficient (generally epoxy resin is used).

Buffer coat can decrease the influence of the resin shrinking (generally silicone resin).

Solder buildup by reflow method and soldering iron methods.

