
Printed on Recycled Paper

Code Composer
User’s Guide

Literature Number: SPRU296A
October 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized
to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL
RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE
(“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH
APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty
or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

iii

This is a draft version printed from file: preface.fm on 9/21/99

Preface

Read This First

About This Manual

This book explains how to use the Code Composer development environment
to build and debug embedded real-time DSP applications.

Notational Conventions

This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that
the system displays (such as prompts, command output, error messages,
etc.).

Here is a sample of C code:

#include <stdio.h>

main()

{

 printf("hello, world\n");

}

❏ In syntax descriptions, the instruction, command, or directive is in a bold
typeface and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Syntax
that is entered on a command line is centered. Syntax that is used in a
text file is left-justified.

❏ Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

iv

Related Documentation From Texas Instruments

For additional information on your DSP and related support tools, see
Related Documentation in Code Composer’s online help.

Related Documentation

You can use the following books to supplement this user's guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989 , American National Standards Institute (ANSI
standard for C)

The C Programming Language (second edition) , by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C , Kochan, Steve G., Hayden Book Company

Trademarks

Code Composer, DSP/BIOS, Probe Point(s), and RTDX are trademarks of
Texas Instruments Incorporated.

Pentium is a registered trademark of Intel Corporation.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

To Help Us Improve Our Documentation . . .

If you would like to make suggestions or report errors in documentation,
please send us mail or email. Be sure to include the following information that
is on the title page: the full title of the book, the publication date, and the
literature number.

Mail: Texas Instruments Incorporated
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Email: dsph@ti.com

v

This is a draft version printed from file: ccTOC.doc on 9/21/99

Contents

1 Setting Up Code Composer .1- 1
1.1 System Requirements .1-2
1.2 Installing Code Composer .1-3
1.3 Setting Up Code Composer .1-3
1.4 Getting Started with Code Composer. .1-4
1.5 Using Online Help. .1-4

2 The Basics of Code Composer .2-1
2.1 Using Code Composer Windows and Toolbars .2-2

2.1.1 Context-Sensitive Menus .2-2
2.2 Using the Dis-Assembly Window .2-3

2.2.1 Opening More Than One Dis-Assembly Window. .2-3
2.2.2 Changing the Start Address .2-3
2.2.3 Managing Breakpoints, Probe Points, and Profile Points from the

Dis-Assembly Window .2-4
2.2.4 Patch Assembly .2-4
2.2.5 Changing Color Highlights .2-4
2.2.6 Setting Dis-Assembly Style Options. .2-4
2.2.7 Viewing Mixed C Source and Assembly Code .2-5

2.3 Using the Memory Window. .2-6
2.3.1 Setting Memory Window Options .2-7
2.3.2 Editing a Memory Location. .2-9
2.3.3 Patch Assembly .2-9
2.3.4 C Expression Input Fields .2-10

2.4 CPU Registers .2-12
2.4.1 Viewing Registers. .2-12
2.4.2 Editing Registers .2-12

2.5 Loading a COFF File .2-13
2.5.1 Loading Symbol Information Only .2-13
2.5.2 Reloading a COFF File. .2-13
2.5.3 Setting Program Load Options .2-14

2.6 Single Stepping .2-15
2.6.1 Multiple Stepping Operations .2-16

2.7 Run, Halt, Animate, Run Free .2-17
2.7.1 Setting Animation Speed .2-18

2.8 Resetting Your Target Processor .2-19
2.9 Copying Data Values .2-19
2.10 Filling Memory Locations .2-20
2.11 Editing Variables. .2-20

vi

 Contents

2.12 Editing the Command Line . 2-21
2.13 Refreshing Windows . 2-22
2.14 Viewing the Call Stack . 2-22

2.14.1 Observing Local Variables . 2-22
2.15 Saving and Restoring Your Workspace . 2-23

2.15.1 Automatically Loading Your Workspace . 2-25
2.15.2 The Default Workspace . 2-25

3 Multiprocessing With Code Composer . 3-1
3.1 The Parallel Debug Manager . 3-2
3.2 Opening an Individual Parent Window . 3-2
3.3 Grouping Processors . 3-3
3.4 Multiprocessor Broadcast Commands . 3-5
3.5 Broadcasting GEL Commands . 3-6
3.6 Auto-Executing GEL Functions . 3-7
3.7 Global Breakpoints . 3-9

4 Breakpoints and Probe Points . 4-1
4.1 Breakpoints . 4-2

4.1.1 Designer Notes (Kernel-Based Code Composer Debugger) 4-2
4.1.2 Adding and Deleting Breakpoints . 4-2
4.1.3 Enabling and Disabling Breakpoints . 4-4

4.2 Conditional Breakpoints . 4-6
4.3 Hardware Breakpoints. 4-7
4.4 Probe Points . 4-8

4.4.1 Adding and Deleting Probe Points . 4-8
4.4.2 Connecting Probe Points . 4-9
4.4.3 Enabling and Disabling Probe Points . 4-10

4.5 Conditional Probe Points. 4-12
4.6 Hardware Probe Points . 4-13

5 Using the File Input/Output Capabilities . 5-1
5.1 File Input/Output . 5-2

5.1.1 File I/O Controls . 5-5
5.1.2 Data File Formats . 5-5

5.2 Loading a Data File . 5-7
5.3 Storing a Data File . 5-7

Contents vii

Contents

6 The Graph Window . . .6-1
6.1 Time/Frequency .6-2

6.1.1 How the Time/Frequency Graph Works .6-2
6.1.2 Display Type. .6-3
6.1.3 Graph Title .6-13
6.1.4 Data Page .6-13
6.1.5 Start Address .6-13
6.1.6 Acquisition Buffer Size .6-14
6.1.7 Display Data Size .6-14
6.1.8 DSP Data Type .6-15
6.1.9 Q-Value .6-15
6.1.10 Sampling Rate (Hz) .6-15
6.1.11 Plot Data From .6-16
6.1.12 Left-Shifted Data Display .6-16
6.1.13 Display Peak and Hold .6-16
6.1.14 Autoscale .6-17
6.1.15 DC Value .6-17
6.1.16 Axes Display. .6-17
6.1.17 Status Bar Display .6-17
6.1.18 Magnitude Display Scale .6-17
6.1.19 Data Plot Style .6-18
6.1.20 Grid Style .6-18
6.1.21 Cursor Mode. .6-18

6.2 Constellation Diagram .6-19
6.2.1 How the Constellation Diagram Works. .6-19
6.2.2 Display Type. .6-20
6.2.3 Graph Title .6-20
6.2.4 Interleaved Data Sources. .6-20
6.2.5 Data Page .6-21
6.2.6 Acquisition Buffer Size .6-21
6.2.7 Index Increment .6-22
6.2.8 Constellation Points .6-22
6.2.9 DSP Data Type .6-22
6.2.10 Q-Value .6-23
6.2.11 Minimum X-Value .6-23
6.2.12 Maximum X-Value .6-23
6.2.13 Minimum Y-Value .6-23
6.2.14 Maximum Y-Value .6-23
6.2.15 Symbol Size .6-23
6.2.16 Axes Display. .6-23
6.2.17 Status Bar Display .6-24
6.2.18 Grid Style .6-24
6.2.19 Cursor Mode. .6-24

viii

 Contents

6.3 Eye Diagram . 6-25
6.3.1 How the Eye Diagram Works . 6-26
6.3.2 Display Type . 6-26
6.3.3 Graph Title . 6-26
6.3.4 Trigger Source . 6-27
6.3.5 Data Page . 6-28
6.3.6 Acquisition Buffer Size . 6-28
6.3.7 Index Increment . 6-28
6.3.8 Persistence Size . 6-29
6.3.9 Display Length . 6-29
6.3.10 Minimum Interval Between Triggers . 6-29
6.3.11 Pre-Trigger (in samples) . 6-30
6.3.12 DSP Data Type . 6-30
6.3.13 Q-Value. 6-31
6.3.14 Sampling Rate . 6-31
6.3.15 Trigger Level . 6-31
6.3.16 Maximum Y-Value. 6-31
6.3.17 Axes Display . 6-31
6.3.18 Time Display Unit . 6-32
6.3.19 Status Bar Display . 6-32
6.3.20 Grid Style . 6-32
6.3.21 Cursor Mode . 6-32

6.4 Image . 6-33
6.4.1 How the Image Graph Works . 6-33
6.4.2 Graph Title . 6-34
6.4.3 Color Space Operations . 6-34
6.4.4 Data Page . 6-36
6.4.5 Lines Per Display . 6-37
6.4.6 Pixels Per Line . 6-37
6.4.7 Byte Packing to Fill 32 Bits . 6-37
6.4.8 Image Origin . 6-37
6.4.9 Uniform Quantization to 256 Colors . 6-38
6.4.10 Status Bar Display . 6-38
6.4.11 Cursor Mode . 6-38

7 The Memory Map . . . 7-1
7.1 Accessing Memory Maps . 7-2
7.2 Defining the Memory Map . 7-3
7.3 Using GEL to Define Your Memory Map. 7-5

8 Using the Watch Window . 8- 1
8.1 Adding and Deleting Expressions in the Watch Window . 8-2

8.1.1 Expanding and Collapsing Watch Variables . 8-3
8.2 Editing Variables in the Watch Window . 8-4
8.3 Watch Window Display Formats . 8-5
8.4 QuickWatch. 8-6

Contents ix

Contents

9 The Integrated Editor .9-1
9.1 Overview of Features .9-2

9.1.1 Standard Toolbar .9-3
9.1.2 Edit Toolbar .9-4

9.2 Keyboard Shortcuts .9-5
9.2.1 Customizing Keyboard Shortcuts .9-8

9.3 File Manipulation .9-9
9.3.1 Creating a New File .9-9
9.3.2 Opening a File .9-10
9.3.3 Duplicating File Views .9-10
9.3.4 Saving Files .9-10
9.3.5 Printing Files. .9-11
9.3.6 Cutting, Copying, and Pasting Text .9-12
9.3.7 Deleting Text .9-12
9.3.8 Editing Columns .9-12
9.3.9 Undo/Redo Actions .9-13
9.3.10 Tabbing Multiple Lines .9-13
9.3.11 Go To Source Line .9-13
9.3.12 Changing Fonts .9-14

9.4 Finding and Replacing Text .9-15
9.4.1 Finding Text in the Current File .9-15
9.4.2 Setting Find/Replace Properties. .9-16
9.4.3 Finding and Replacing Text .9-16
9.4.4 Finding Text in Multiple Files .9-17

9.5 Setting Editor Properties. .9-18
9.6 Using Bookmarks .9-19

9.6.1 Managing Your Bookmarks .9-20
9.6.2 Editing Bookmark Properties .9-20

10 The Project Environment . 10-1
10.1 Creating, Opening, and Closing Projects .10-2
10.2 Adding Files to the Project .10-4
10.3 Scanning Dependencies. .10-6
10.4 Project Environment Build Options. .10-8
10.5 Project Build Commands .10-8

11 Profiling Code Execution .11-1
11.1 Profile Clock .11-2

11.1.1 Profile Clock Setup. .11-3
11.1.2 Profile Clock Accuracy .11-4

11.2 Profile Points .11-6
11.2.1 Enabling and Disabling Profile Points .11-7

11.3 Hardware Profile Points .11-9
11.4 Viewing Statistics .11-10
11.5 Divide And Conquer Using Profile Points .11-12

x

 Contents

12 The General Extension Language (GEL) . 12-1
12.1 GEL Grammar. 12-2
12.2 GEL Function Definition . 12-3
12.3 GEL Function Parameters. 12-5
12.4 Calling GEL Functions and Statements . 12-7

12.4.1 GEL Return Statement . 12-7
12.4.2 GEL If-Else Statement . 12-7
12.4.3 GEL While Statement . 12-8
12.4.4 GEL Comments . 12-8
12.4.5 GEL Preprocessing Statements . 12-9

12.5 Loading/Unloading GEL Functions . 12-10
12.6 Adding GEL Functions to the GEL Menu Using Keywords . 12-11

12.6.1 The hotmenu Keyword . 12-11
12.6.2 The dialog Keyword . 12-12
12.6.3 The slider Keyword . 12-13

12.7 Accessing the Output Window . 12-15
12.8 Autoexecuting GEL Functions Upon Startup . 12-16
12.9 Viewing the Expression Queue . 12-18
12.10 Built-In GEL Functions . 12-19

A Frequently Asked Questions . A-1
A.1 Installation/Loading Code Composer . A-2
A.2 DSP Project Management System . A-4
A.3 General Debugging . A-8
A.4 Editor. A-9
A.5 Watch Window . A-9
A.6 General Extension Language – GEL . A-10
A.7 Graph Window . A-12

B Glossary. B-1

1-1

Chapter 1

Setting Up Code Composer

This chapter describes how to install and set up Code Composer on your
computer.

1.1 System Requirements . 1–2

1.2 Installing Code Composer . 1–3

1.3 Setting Up Code Composer . 1–3

1.4 Getting Started with Code Composer . 1–4

1.5 Using Online Help . 1–4

Topic Page

System Requirements

1-2

1.1 System Requirements

To use Code Composer, your operating platform must meet the following
minimum requirements:

❏ IBM PC (or compatible) or UNIX workstation

❏ Microsoft Windows 95, Windows 98, or Windows NT 4.0; Solaris 2.5 for
UNIX

❏ 32 Mbytes RAM, 100 Mbytes of hard disk space, Pentium processor,
SVGA display (800x600)

❏ UNIX: 27 Mbytes of hard disk space

Installing Code Composer

Setting Up Code Composer 1-3

1.2 Installing Code Composer

The complete installation process consists of two phases:

1) Install the Code Composer software onto your system.

2) Run the Code Composer Setup application to configure the interface that
enables Code Composer to communicate with your DSP target board or
simulator.

The rest of this section describes how to install the software onto your
system. Section 1.3, Setting Up Code Composer, describes how to run the
Code Composer Setup application.

Installing Code Composer for Windows 95/98/NT

Use the following procedure to install Code Composer for Windows 95/98/NT:

1) While in Windows, insert the installation CD into the CD-ROM drive.

2) In Windows Explorer, switch to the CD-ROM drive and run setup.exe. You
must install Code Composer using administrator privileges for Windows
NT.

The installation creates “CCStudio” and “Setup CCStudio” program icons on
the desktop.

Installing Code Composer for UNIX

For information on installing Code Composer for UNIX, see the UNIX
Installation Manual.

1.3 Setting Up Code Composer

Code Composer Setup establishes the interface that allows Code Composer
to communicate with your DSP target board or simulator. Before running the
setup program, you must install the software, as described in Section 1.2,
Installing Code Composer.

Start Code Composer Setup by double-clicking on the “Setup CCStudio” icon
located on the desktop.

Follow the Code Composer Setup on-screen prompts to define your system
configuration. If you need additional help, please consult the Help menu.

Getting Started with Code Composer

1-4

Note: Troubleshooting

If you experience difficulty in setting up your Code Composer software, see
Appendix A, Frequently Asked Questions, for troubleshooting tips.

1.4 Getting Started with Code Composer

When you have completed the installation and setup process, run the Code
Composer Tutorial. This tutorial familiarizes you with many features of the
software, including features that are new in this version. Performing this
tutorial before you use Code Composer shortens your learning time and
provides information on many fundamental procedures.

To access the Code Composer Tutorial, perform the following steps:

1) Start Code Composer by double-clicking on the “CCStudio” icon located
on the desktop.

2) From the Code Composer Help menu, select Tutorial->Code Composer
Tutorial.

1.5 Using Online Help

To obtain help on any aspect of Code Composer, select Help->General Help.

From the Code Composer General Help Contents and Index you can browse
or search for information on any tool, feature, or functionality of the Code
Composer product.

2-1

Chapter 2

The Basics of Code Composer

This chapter contains an introduction to the basic concepts and features of
Code Composer. These concepts are essential to almost any debugging
session.

2.1 Using Code Composer Windows and Toolbars 2–2

2.2 Using the Dis-Assembly Window. 2–3

2.3 Using the Memory Window. 2–6

2.4 CPU Registers . 2–12

2.5 Loading a COFF File . 2–13

2.6 Single Stepping . 2–15

2.7 Run, Halt, Animate, Run Free . 2–17

2.8 Resetting Your Target Processor. 2–19

2.9 Copying Data Values. 2–19

2.10 Filling Memory Locations . 2–20

2.11 Editing Variables . 2–20

2.12 Editing the Command Line . 2–21

2.13 Refreshing Windows . 2–22

2.14 Viewing the Call Stack. 2–22

2.15 Saving and Restoring Your Workspace . 2–23

Topic Page

Using Code Composer Windows and Toolbars

2-2

2.1 Using Code Composer Windows and Toolbars

All windows (except Edit windows) and all toolbars are dockable within the
Code Composer environment. This means you can move and align a window
or toolbar to any portion of the Code Composer main window.

You can also move dockable windows and toolbars out of the Code
Composer main window and place them anywhere on the desktop. To move
a toolbar, simply click-and-drag the toolbar to its new location.

To Move a Window Out of the Main Window

1) Right-click in the window and select Allow Docking from the context
menu.

2) Left-click in the window’s title bar and drag the window to any location on
your desktop.

All dockable windows contain a context-sensitive menu that provides three
options for controlling window alignment.

Allow Docking Toggles window docking on and off.

Hide Hides the active window beneath all other
windows.

Float in the Main Window Turns off docking and allows the active
window to float in the main window.

UNIX Workstations

To toggle docking for an active window, grab the window underneath the
window title bar.

2.1.1 Context-Sensitive Menus

All Code Composer windows contain context-sensitive menus. To open a
context menu, right-click within the window.

Context menus provide a list of options and/or commands that can be applied
to that particular window. For example, you can manipulate projects (add/
remove source/GEL files, set build options, etc.) by right-clicking on the
project files displayed in the Project View window and selecting the
appropriate action. (See Chapter 10, The Project Environment for information
on working with projects.)

Using the Dis-Assembly Window

The Basics of Code Composer 2-3

2.2 Using the Dis-Assembly Window

When you load a program onto your DSP target or simulator, the Code
Composer debugger automatically opens a Dis-Assembly window.

The Dis-Assembly window displays disassembled instructions and symbolic
information needed for debugging. Disassembly reverses the assembly
process and allows the contents of memory to be displayed as assembly
language code. Symbolic information consists of symbols and strings of
alphanumeric characters that represent addresses or values on the DSP
target.

For each assembly language instruction, the Dis-Assembly window displays
the disassembled instruction, the address at which the instruction is located,
and the corresponding opcodes (machine codes that represent the
instruction). To produce the disassembly listing, the debugger reads opcodes
from the target board, disassembles them, and adds symbolic information
starting at the location indicated by the active program counter (PC). The line
containing the current PC is highlighted in yellow.

As you step through your program using the stepping commands, the PC
advances to the appropriate instruction. For the sections of your program
code that are written in C, you can choose to view mixed C source and
assembly code (see Section 2.2.7, Viewing Mixed C Source and Assembly
Code).

2.2.1 Opening More Than One Dis-Assembly Window

Multiple Dis-Assembly windows can be opened by selecting the command
View->Dis-Assembly or by using the Dis-Assembly Window shortcut on the
Debug toolbar:

Dis-Assembly Window Shortcut:

The first window tracks the location of the PC. When more than one
Dis-Assembly window appears, the title bar displays Dis-Assembly <n>,
where n is a unique window number.

2.2.2 Changing the Start Address

You can change the start address of the Dis-Assembly window by
double-clicking on the address field of the window. This brings up the View
Address dialog box that allows you to enter the start address you wish to use.
You may enter any absolute number or C expression that uses valid program
symbols.

Using the Dis-Assembly Window

2-4

2.2.3 Managing Breakpoints, Probe Points, and Profile Points from the
Dis-Assembly Window

To set or clear breakpoints, Probe Points, and profile points, place the cursor
on the line of interest in the Dis-Assembly window and select an appropriate
command under the Debug or Profiler menus or press the appropriate button
on the Project toolbar. Breakpoints may be quickly set by double-clicking on
the line of interest. These set points are indicated by a colored background
on the line. The color depends on what type of point is set. For example, if a
breakpoint and a Probe Point are set on the same line, a purple and blue
background appears on that line.

2.2.4 Patch Assembly

The patch assembly feature allows you to modify the assembly code on the
target using DSP opcodes and symbols. The quickest way to start patching
your code is by pressing the right mouse button in the Dis-Assembly window
at the address where you want to patch code. For more details, see Section
2.3.3, Patch Assembly, page 2-9. You can also invoke patch assembly by
selecting Memory->Patch ASM from the Edit menu.

Note: 'C6000 processors

Patch assembly is not supported for 'C6000 processors (actual or
simulated).

2.2.5 Changing Color Highlights

You can change the default display colors for the current PC and debugging
points (breakpoints/profile points/Probe Points) using the Colors command
on the Option menu.

2.2.6 Setting Dis-Assembly Style Options

Code Composer offers several options for changing the way you view
information in the Dis-Assembly window. The Dis-Assembly Style Options
dialog box allows you to input specific viewing options for your debugging
session. For instance, you may select hex or decimal as the addressing radix.

Using the Dis-Assembly Window

The Basics of Code Composer 2-5

To Set Dis-Assembly Style Options

1) Select the command Option->Dis-Assembly Style from the menu.

OR

Right-click with the mouse in the Dis-Assembly window. From the context
menu, select Properties->Dis-Assembly.

2) Enter your choices in the Dis-Assembly Style Options dialog box.

3) Click OK.

The contents of the Dis-Assembly window are immediately updated with the
new style.

2.2.7 Viewing Mixed C Source and Assembly Code

In addition to viewing disassembled instructions in the Dis-Assembly window,
the Code Composer debugger enables you to view your C source code
interleaved with disassembled code.

To View Mixed C Source and Assembly Code

After loading a program onto your DSP target or simulator:

1) Select the command View->Mixed Source/ASM from the menu. A check
mark identifies when this option is selected.

2) Select the command Debug->Go Main.

The debugger starts executing the program and stops execution at
main(). The associated C source file is automatically displayed in an Edit
window. (See Section 2.8, Resetting Your Target Processor for further
information.) Notice that the disassembled instructions for each C
statement appear within the source code. Just as in the Dis-Assembly
window, the location of the PC is highlighted in yellow.

You can choose to view the C source file with or without assembly code. To
change your selection, toggle View->Mixed Source/ASM or right-click in the
Edit window to open the context menu and select Mixed Mode or Source
Mode, depending on your current selection.

Using the Memory Window

2-6

2.3 Using the Memory Window

The Code Composer debugger allows you to view the contents of memory at
a specific location.

To View the Contents of Memory

1) Select View->Memory from the menu.

OR

Select the View Memory shortcut button on the Debug toolbar.

Memory Window Shortcut:

2) Before the Memory window is displayed, the Memory Window Options
dialog box appears. This dialog allows you to specify various
characteristics of the Memory window.

Enter the desired characteristics in the Memory Window Options dialog
box (see Section 2.3.1, Setting Memory Window Options).

3) Click OK. The Memory window appears.

To modify any of the characteristics of the active Memory window, right-click
in the Memory window and select Properties from the context menu. The
Memory Window Options dialog box appears.

To edit the contents of a memory location, double-click the appropriate
address in the Memory window or select Edit->Memory->Edit. The Edit
Memory dialog box appears (see Section 2.3.2, Editing a Memory Location).

Using the Memory Window

The Basics of Code Composer 2-7

2.3.1 Setting Memory Window Options

The Memory Window Options dialog box allows you to specify various
characteristics of the Memory window.

The Memory Window Options dialog offers the following options:

Address Enter the starting address of the memory location
you want to view.

Q Value You can display integers using a Q value. This value
is used to represent integer values as more precise
binary values. A decimal point is inserted in the
binary value; its offset from the least significant bit
(LSB) is determined by the Q value as follows:

New_integer_value = integer / 2Q value

A Q value of xx indicates a signed 2s complement
integer whose decimal point is displaced xx places
from the least significant bit (LSB).

Format From the drop-down list, select the format of the
memory display.

Use IEEE Float Select this option if you want the display to use the
IEEE floating-point format.

Page From the drop-down list, select the type of page:
Program, Data, or I/O.

Enable Reference Buffer
Select this checkbox to save a snapshot of a
specified area of memory that can be used for later
comparison.

For example, suppose you select Enable Reference
Buffer and specify an address range of
0x0000..0x002F. The contents of memory for the
specified range are saved in host memory. Every
time you halt the target, hit a breakpoint, refresh
memory, etc., the debugger compares the contents
of the Reference Buffer with the current contents of
memory. Any changes are displayed in red as you
scroll through this memory space in the Memory
window.

Using the Memory Window

2-8

Start Address Enter the starting address of the memory locations
you want to save in the Reference Buffer. This field
only becomes active when Enable Reference Buffer
is selected.

End Address Enter the ending address of the memory locations
you want to save in the Reference Buffer. This field
only becomes active when Enable Reference Buffer
is selected.

Update Reference Buffer Automatically
Select this checkbox to automatically overwrite the
contents of the Reference Buffer with the current
contents of memory at the specified range of
addresses. If this checkbox is not selected, the
contents of the Reference Buffer are not changed.
This option only becomes active when Enable
Reference Buffer is selected.

All input fields are C expression input fields. An expression containing a
symbol name can be used to specify the starting address in the Memory
Window Options dialog. For further information, see Section 2.3.4.1, Using
Symbols within Expressions.

Display Formats

The Memory window can display the contents of DSP memory in many
different formats. The supported display formats are listed below:

C-style hex Words are displayed with the prefix 0x

Hex TI format for displaying hex numbers

Signed integer Values are shown as signed integers

Unsigned integer Values are shown as unsigned integers

Character Character equivalent of the LSB of each word is
displayed

Packed character Each word is shown as the sum of 8-bit characters

Floating point Values are shown in decimal floating-point format

Exponential float Values are shown in exponential floating-point
format

Binary Values are shown in binary format

Using the Memory Window

The Basics of Code Composer 2-9

2.3.2 Editing a Memory Location

You can edit a memory location in one of the following ways:

❏ In the Memory window, double-click on the data you wish to edit, or
❏ Select the Edit->Memory->Edit command.

Both of these methods open the Edit Memory dialog box. If you have
double-clicked on a memory location in the Memory window, the Address and
Data fields contain the address and data value of the selected location.

If you used the menu command, the Address and Data fields contain default
values. To get the desired address location, enter the address you wish to edit
in the Address field. Press Tab or click on the Data field and the content is
updated with the value at the specified address. To change the data value of
that location, enter the desired value into the Data field and press Done. You
can also use the scroll buttons on the Address field to move through the
memory locations.

If you double-click on a location in the Memory window, the default format of
the Data field is the same as in the Memory window.You can enter values in
either hex format (with prefix 0x) or in decimal format (with no prefix) if the
display format is integer. You can also enter floating-point values, provided
the display format is compatible.

All the input fields are C expression input fields.

2.3.3 Patch Assembly

The patch assembly feature of Code Composer allows you to quickly modify
executable code on the DSP target without having to rebuild your project. The
quickest way to invoke this feature is to place the cursor on the address of
interest in the Dis-Assembly window and press the right mouse button. You
can also invoke patch assembly by selecting Edit->Memory->Patch ASM
from the menu.

The address field of the patch assembler contains the address of the
instructions you wish to modify. This field is automatically incremented each
time your instructions are successfully assembled. You can use the spin
control buttons on the address field to scroll through the memory locations
manually. You can also enter any valid C expression in the address field.

Using the Memory Window

2-10

In the ASM Instruction field, you can enter any valid DSP instruction, including
valid COFF symbols. Once you have entered an instruction, press Enter to
perform the patch. If the instructions are assembled with no errors, the
Address field automatically updates to the next available program address.

Note: 'C6000 processors

Patch assembly is not supported for 'C6000 processors (actual or
simulated).

2.3.4 C Expression Input Fields

All input fields that require a numerical value are C expression input fields. In
these input fields, you can enter any valid C expression, including the names
of C functions or assembly language labels. The expression is then reduced
to a single numerical value and displayed, as shown in the following
examples:

MyFunction
0x1000 + 2 * 35
(int) MyFunction + 0x100
PC + 0x10

The default display format for these fields is hexadecimal but can be changed
by using special formatting symbols, similar to the Watch window symbols
(see Section 8.3, Watch Window Display Formats).

Using the Memory Window

The Basics of Code Composer 2-11

2.3.4.1 Using Symbols within Expressions

An expression containing a symbol name can be used for all fields requiring
numerical input. However, Code Composer interprets symbols differently
depending on whether or not the object file contains symbolic debugging
information.

If a symbol is defined in a C source file and symbolic debugging information
(-g) is specified when building the file, the symbol is treated as a variable
representing the contents of memory at the specified address.

Without symbolic debugging information, all symbols are treated as
addresses.

For example, when using a symbol name to specify the starting address in
the Memory Window Options dialog or the Graph Property dialog box:

If symbolic debugging information is available, and you want to use the
address of a simple variable, you should prepend the symbol name (variable)
with an ampersand (&), the standard C-language notation for expressing an
address. Otherwise (without the ampersand), the expression evaluates to the
contents of the symbol. The exception is variables representing arrays; in
C-notation, specifying the name with the ampersand implies that you are
referring to the address at the start of the array.

If no symbolic debugging information is available, specify only the symbol
name (address).

CPU Registers

2-12

2.4 CPU Registers

The CPU and peripheral registers of the target processor can be viewed
using the Register window. The contents of registers can be edited using the
Edit Registers dialog.

2.4.1 Viewing Registers

To view the contents of the CPU registers of the target processor, select the
command View->CPU Registers->CPU Register. You can also display the
CPU Register window by selecting the View Registers button on the Debug
toolbar.

Register Window Shortcut:

From the Register window, you can edit registers via the Edit Registers
dialog.

2.4.2 Editing Registers

To Edit the Contents of a Register

From the Edit menu, select the Edit Register command. The Edit Registers
dialog box appears.

OR

From the Register window, double-click a register or right-click in the window
and select Edit Register from the context menu.

The Edit Registers dialog offers the following options:

Register Specify the register you want to edit by typing its name or by
selecting a register from the drop-down list.

Value This field contains the current value of the specified register
displayed in hex. You can enter another value in this field in
hex (with the prefix 0x) or in decimal (with no prefix). You can
also enter any valid C expression.

After modifying the value of a register, click Close to apply your changes.
Click Close again to close the dialog box.

Note: Simulator - Peripheral Registers Not Supported

The simulator does not include peripheral register support.

Loading a COFF File

The Basics of Code Composer 2-13

2.5 Loading a COFF File

To load a valid COFF file onto your actual/simulated target board, select
File->Load Program. The Load Program dialog box appears. Select the
desired file and click Open.

This command loads the data as well as the symbol information from the
COFF file.

2.5.1 Loading Symbol Information Only

To load symbol information only, select File->Load Symbol. The Load Symbol
Info dialog box appears. Select the desired file and click Open.

This functionality is useful in a debugging environment where the debugger
cannot or need not load the object code, such as when the code is in ROM.

This command clears the existing symbol table before loading the new one
but does not modify memory or set the program entry point.

2.5.2 Reloading a COFF File

To reload a valid COFF file onto your actual/simulated target board, select
File->Reload Program. Before reloading the program, a check is performed
to see if the file has been changed since the last load. If the file has changed,
both the program and its symbol information are reloaded. If no change is
detected, only the program is reloaded; its associated symbol table is not
reloaded.

This command is useful for reloading a program when target memory has
been corrupted.

Loading a COFF File

2-14

2.5.3 Setting Program Load Options

To open the Program Load Options dialog box, select Options->Program
Load. The Program Load Options dialog box offers the following options:

Perform verification after Program Load. By default, this checkbox is
checked. This means that Code Composer will verify (by reading back
selected memory) that the program was loaded correctly. If you remove the
check from this option, Code Composer will not perform this verification.

Load Program After Build. If you check the Load Program After Build option,
the executable is loaded immediately upon building the project. This ensures
that the target contains the most up-to-date symbolic information generated
after a build.

Single Stepping

The Basics of Code Composer 2-15

2.6 Single Stepping

Use the following buttons from the Debug toolbar to single step through code.

Step Into: You can single step through the code by either clicking on
the shortcut button on the Debug toolbar or by selecting Debug->StepInto
from the menu. If you are in C source mode, this command steps through a
single C instruction; otherwise, it steps through a single assembly instruction.

Step Over: You can use the step over command to step through and
execute individual statements in the current function. If a function call is
encountered, the function executes to completion unless a breakpoint is
encountered before it stops after the function call. You can step over code by
either clicking on the shortcut button on the Debug toolbar or by selecting
Debug->StepOver from the menu.

You may view the file entirely in C or display the assembly files at the same
time. In C source mode (see Section 2.2.7, Viewing Mixed C Source and
Assembly Code), this command steps over an entire C instruction; otherwise,
it steps over a single assembly instruction. However, to protect the
processor's pipeline, several instructions following a delayed branch or call
may be considered part of the same statement. In this case, the step over
command may execute more than one instruction at a time.

Step Out: If you are inside a subroutine, you can select the step out
command to complete execution of the subroutine. The execution stops after
the current function returns to the calling function. You can step out by either
clicking on the shortcut button on the Debug toolbar or by selecting
Debug->StepOut from the menu.

In C source mode, the calling function is determined from the standard
runtime C stack using the local frame pointer; otherwise, the return address
to the calling function is assumed to be the value on the top of the stack. If
your assembly routine uses the stack to store other information, the step out
command does not function properly.

Run to Cursor: You can use the run to cursor feature to run the loaded
program until it encounters the Dis-Assembly window cursor position. You
can run to cursor by selecting Debug->Run to Cursor from the menu.

Single Stepping

2-16

2.6.1 Multiple Stepping Operations

To Invoke a Stepping Command Multiple Times

1) Select the command Debug->Multiple Operations from the menu. The
Multiple Operations dialog box appears.

2) Select a stepping command from the drop-down list.

3) Specify the number of times the command is to be invoked.

4) Click OK.

Repeat this procedure to invoke the same or another stepping command
multiple times.

Run, Halt, Animate, Run Free

The Basics of Code Composer 2-17

2.7 Run, Halt, Animate, Run Free

Run: You can execute your program from the current PC location by
clicking on the shortcut button on the Debug toolbar or by selecting
Debug->Run from the menu. Execution continues until a breakpoint is
encountered.

Halt: You can stop execution of your program by clicking on the Halt
button on the Debug toolbar or by selecting Debug->Halt from the menu.

Animate: You can animate your program by clicking on the shortcut
button on the Debug toolbar or by selecting Debug->Animate from the menu.
The program runs until it encounters a breakpoint. It updates the windows
that are not connected to any Probe Points and resumes execution. To halt
animation, select Debug->Halt. You can control the speed of animation by
selecting Option->Animate Speed.

Run Free: This command disables all breakpoints, including Probe Points
and profile points, before executing your program starting from the current PC
location. Select the command Debug->Run Free from the menu. Any
operation that accesses the target processor while in free run restores
breakpoints. Use the Debug->Halt command to stop execution. If you are
emulating using a JTAG-based device driver, this command also disconnects
from the target processor so you can remove the JTAG or MPSD cable. You
can also perform a hardware reset of your target processor while in free run.

Note: Simulator - Run Free Not Supported

When running the simulator, the run free capability is not available.

Run, Halt, Animate, Run Free

2-18

2.7.1 Setting Animation Speed

The animation speed is the minimum time between breakpoints. In animation
mode, the DSP program executes until a breakpoint is encountered. At this
breakpoint, execution stops and all windows not connected to any Probe
Points are updated. The program execution resumes until the next
breakpoint. This animates the processor state at each breakpoint. A Probe
Point always resumes execution after updating the window connected to it.

To Set Animation Speed

1) Select the command Option->Animate Speed. The Animate Speed
Properties dialog box appears.

2) Enter the animation speed in seconds.

3) Click OK.

Program execution does not resume until the minimum time has expired since
the previous breakpoint.

To animate, select Debug->Animate from the menu. To halt animation, select
Debug->Halt from the menu.

Resetting Your Target Processor

The Basics of Code Composer 2-19

2.8 Resetting Your Target Processor

The following commands are available to reset your target processor:

Reset DSP: The Debug->Reset DSP command initializes all register
contents to their power-up state and halts the execution of your program. If
the target board does not respond to this command and you are using a
kernel-based device driver, the DSP kernel may be corrupt. In this case, you
must reload the kernel. The simulator initializes all register contents to their
power-up state, according to DSP target simulation specifications.

Load Kernel: If you are using a kernel-based debugger (not JTAG), then the
DSP kernel is responsible for the communication to the host computer. If it is
corrupt, the device driver may not be able to communicate with the DSP. In
this case, you must execute the Debug->Load Kernel command to restore the
kernel to its proper state.

Restart: The Debug->Restart command restores the PC to the entry point for
the currently loaded program. This command does not start program
execution.

Go Main: The Debug->Go Main command sets a temporary breakpoint at the
symbol main in your program, and starts execution. The breakpoint is
removed when execution is halted or a breakpoint is encountered. This
provides a convenient way for C programmers to start their application. When
execution stops at main(), the associated source file is automatically loaded.

2.9 Copying Data Values

To Copy a Block of Memory to a New Location

1) Select Edit->Memory->Copy from the menu. The Setup for Copying
dialog box appears.

2) Enter the Source information:

Address . The starting address of the block of memory to be copied.

Length . The length of the block of memory to be copied.

3) Enter the Destination information

Address . The address to which the block of memory will be copied.

4) Click OK to perform the copy.

All the input fields are C expression input fields.

Filling Memory Locations

2-20

2.10 Filling Memory Locations

To Fill a Block of Memory with a Specified Value

1) Select Edit->Memory->Fill from the menu. The Setup Filling Memory
dialog box appears.

2) Enter the following information:

Address . The start address of the block of memory to be filled.

Length . The length of the block of memory to be filled.

Fill Pattern . The pattern to use in filling the block of memory.

3) Click OK to perform the fill.

All locations starting from the start address to start address + length - 1 are
filled with the fill pattern entered in the Fill Pattern field.

All the input fields are C expression input fields.

2.11 Editing Variables

To Edit a Variable

1) Select Edit->Edit Variable from the menu. The Edit Variable dialog box
appears.

2) Enter the following information:

Variable . The name of the variable to be edited.

Value . The new value.

3) Click OK to perform the edit.

The Edit Variable dialog box is also used when editing expressions in the
Watch window (see Section 8.2, Editing Variables in the Watch Window).

All the input fields are C expression input fields.

For TI fixed-point processors, if your actual/simulated target consists of
multiple pages, you can specify the specific page with the @ symbol. After
you type the symbol, enter one of the keywords: prog, data, or io. The
keyword specifies whether the page is a program, data or I/O page, as shown
in the following examples:

*0x1000@prog = 0
*0x1000@data = myVar
*0x2000@io = 0

Editing the Command Line

The Basics of Code Composer 2-21

2.12 Editing the Command Line

The Command Line dialog provides a convenient way of entering expressions
or executing GEL functions You can execute any of the built-in GEL functions
or you can execute your own GEL functions that have been loaded (see
Section 12.5, Loading/Unloading GEL Functions).

To Execute Commands

1) Select Edit->Edit Command from the menu. The Command Line dialog
box appears.

2) Enter an expression or GEL function in the Command field.

3) Click OK to execute the command.

You can also enter and execute built-in GEL expressions or user-defined GEL
functions via the GEL toolbar. To access this toolbar, select View->GEL
Toolbar. The scrollable list in the GEL toolbar contains a history of the most
recently executed GEL functions. To execute a previously used command,
select the command and press the shortcut button.

Execute Shortcut:

The following examples display commands that can be entered in the GEL
toolbar or the Command Line dialog:

Modify variables by entering expressions:

PC = c_int00

Load programs with built-in GEL functions:

GEL_Load("c:\\myprog.out")

Run your own GEL functions:

MyFunc()

Refreshing Windows

2-22

2.13 Refreshing Windows

All windows usually show the current status of the target board. However, if
you connect a window to a Probe Point, the window may not contain the latest
information (see Chapter 4, Breakpoints and Probe Points). To update a
window, select Window->Refresh from the menu. This command updates the
active window with the current target data.

2.14 Viewing the Call Stack

You can use the Call Stack window to examine the series of function calls that
led to the current location in the program that you are debugging. To display
the call stack, select View->Call Stack from the menu or press the View Stack
shortcut button on the Debug toolbar.

Call Stack Shortcut:

To display the source code for a calling function in a list, double-click on the
desired function. An Edit window with the source code appears with the
cursor set to the current line within the desired function. When you select a
function in the Call Stack window, you can also observe local variables that
are within the scope of the function.

The call stack only works with C programs. Calling functions are determined
by walking through the linked list of frame pointers on the runtime stack. Your
program must have a stack section and a main function; otherwise, the call
stack displays the message: C source is not available.

2.14.1 Observing Local Variables

You can observe local variables (automatic variables) of a function that is not
currently running but resides in the call stack. Use the Call Stack window to
change the scope to that of the function you are interested in. You can then
observe (or add to the Watch window) all local variables of that function.

Saving and Restoring Your Workspace

The Basics of Code Composer 2-23

2.15 Saving and Restoring Your Workspace

You can save and restore your current working environment, called a
workspace, between debugging sessions. You can also switch between
different working environments in the same debugging session.

To Save a Workspace

1) Select File->Workspace->Save Workspace from the menu. The Save As
dialog box appears.

2) Enter a name for the workspace in the File name field.

3) Click Save.

When you exit Code Composer, your current workspace is automatically
saved in a file named default.wks (see Section 2.15.2, The Default
Workspace).

To Load a Workspace

1) Select File->Workspace->Load Workspace from the menu. The Load
Workspace dialog box appears.

2) In the Load Workspace dialog box, enter the name of the workspace file
in the File name field.

3) Click Open.

You can automatically load a particular workspace every time you start Code
Composer (see Section 2.15.1, Automatically Loading Your Workspace).

Things that are Saved in the Workspace

❏ Parent windows (including size and position)
❏ Child windows (including size and position)
❏ Breakpoints, Probe Points, profile points
❏ Profiler options
❏ Current project
❏ Currently loaded GEL functions
❏ Memory map
❏ Animation speed option
❏ File I/O setup

Saving and Restoring Your Workspace

2-24

Things that are Not Saved in the Workspace

❏ Current font
❏ Current color scheme
❏ Target memory, program, or processor state
❏ Edit and find/replace floating tools
❏ Error and progress messages in the build window
❏ GEL output windows
❏ Scan dependency window
❏ Disassembly style options

Note: Font and Color Scheme Saved

Your font and color scheme, along with profiler options, memory map, and
animate speed, are automatically saved and restored between sessions in a
file named cc_user.dat.

Note: Initializing Target Processor

You can initialize your target processor state using the GEL extension
language (see Section 3.6, Auto-Executing GEL Functions).

Saving and Restoring Your Workspace

The Basics of Code Composer 2-25

2.15.1 Automatically Loading Your Workspace

You can automatically load a particular workspace every time you start Code
Composer. To do this, you must name the workspace as the first command
line parameter when starting the application. This parameter must end in
.wks, for Code Composer to recognize it as a workspace file. Otherwise,
Code Composer will attempt to load it as a GEL file.

To Autoload a Workspace (Windows 95/98/NT)

1) In Windows Explorer, select the Code Composer executable.

2) Right-click with your mouse on the executable and select Create Shortcut
to create a shortcut to the executable.

3) Right-click on the shortcut that is created and select Properties.

4) In the Properties dialog box, select the Shortcut tab.

5) Verify that the Target field contains the path name and file name of the
Code Composer executable. For example: c:\ti\cc\bin\cc_app.exe.

6) At the end of this path name, add the name of your workspace file (which
must end in .wks). For example: c:\ti\cc\bin\cc_app.exe myspace.wks.

Note: Default Workspace

If you specify the file default.wks, the default workspace will be
automatically loaded every time you start Code Composer.

2.15.2 The Default Workspace

Your current workspace is automatically saved in a file named default.wks
when you exit Code Composer. If you wish to resume where you left off, start
Code Composer and load default.wks with the File->Workspace->Load
Workspace command. If you start Code Composer with default.wks as the
first program parameter on the command line, the default workspace is
automatically loaded every time you start Code Composer.

You can setup Code Composer to automatically load the default workspace
every time you start the application. This provides a way to automatically save
and restore your environment between sessions.

Saving and Restoring Your Workspace

2-26

To Autoload a Workspace and GEL Files On Start Up

You can load both your workspace and the associated GEL files when you
start Code Composer:

1) With Code Composer running, load the desired GEL functions and save
the entire environment as a workspace by selecting
File->Workspace->Save Workspace from the menu. (See Section 12.5,
Loading/Unloading GEL Functions).

2) Setup Code Composer to automatically load this workspace on startup
(see Section 2.15.1, Automatically Loading Your Workspace).

If you are operating in a multiprocessor environment, see Section 3.6,
Auto-Executing GEL Functions.

3-1

Chapter 3

Multiprocessing With Code Composer

Code Composer can support concurrent debugging sessions of multiple
processors. The Parallel Debug Manager is used to broadcast commands to
all processors and to select them individually. Before you can use the Parallel
Debug Manager, you must configure the multiprocessing environment using
the Code Composer Setup program. Once this configuration is set up and
Code Composer is invoked, the Parallel Debug Manager menu bar appears
on your screen.

Note: Simulator - Multiprocessing Not Supported

The simulator does not support multiple DSP systems. You must use the
emulator version of the Code Composer debugger along with a multi-DSP
target board.

3.1 The Parallel Debug Manager. 3–2

3.2 Opening an Individual Parent Window . 3–2

3.3 Grouping Processors . 3–3

3.4 Multiprocessor Broadcast Commands . 3–5

3.5 Broadcasting GEL Commands. 3–6

3.6 Auto-Executing GEL Functions . 3–7

3.7 Global Breakpoints . 3–9

Topic Page

The Parallel Debug Manager

3-2

3.1 The Parallel Debug Manager

The Parallel Debug Manager allows you to synchronize multiple processors.
If you have several processors and a device driver that supports them, the
Parallel Debug Manager is enabled when you start Code Composer. From
the Parallel Debug Manager menu, you can open individual parent windows
to control each processor or you can broadcast commands to a group of
processors (see Section 3.3, Grouping Processors).

Parallel Debug Manager is a floating toolbar. To keep it on top of other
windows, select Options->Always On Top from the menu. You can change the
shape of the menu bar by resizing it. The command buttons and menus wrap
around to fit the size of the window.

3.2 Opening an Individual Parent Window

From the Parallel Debug Manager menu, you can open a window to control
each processor.

To Select A Debugging Session on a Processor

1) Select Open from the Parallel Debug Manager menu bar.

2) Select the processor by its name. This opens a parent window for the
selected processor.

Note: Current System Configuration

The Open menu contains the list of physical target boards/DSPs and
simulated DSPs that are defined in your current system configuration. If the
correct processor list does not appear under the Open menu, make sure
that you have correctly configured Code Composer with the Code
Composer Setup program.

Grouping Processors

Multiprocessing With Code Composer 3-3

3.3 Grouping Processors

All commands in the Parallel Debug Manager are broadcast to all target
processors in the current group. Code Composer allows you to define up to
32 different groups of processors. Each processor may be included in one or
more groups. To view the list of groups, select Group on the Parallel Debug
Manager menu bar. This lists all groups by name. Select the group you wish
to use. The active group has a check beside the name, as shown in the
following figure:

To Edit a Group

Select Group->Edit from the Parallel Debug Manager menu bar. The Groups
dialog box appears.

Grouping Processors

3-4

The Groups dialog box displays group names in the first column and
processor names across the top. Each entry in the table is either Y (yes) or N
(no). When these entries are Y, the processor for that column is included in
the group in the same row. Only processors that are included in the current
group receive broadcast messages.

Group names can be edited directly and must be unique. By default, a group
named FirstBoard is created that includes all processors. This group can be
modified, but you cannot delete it. This ensures that there is always at least
one group available.

To Create a New Group

In the Groups dialog box, click New. Code Composer generates a new group
with a unique name. Initially, none of the processors are included in the new
group.

To Include a Processor in a Group

1) Find the column corresponding to the processor you wish to include.

2) Find the row corresponding to the group where you want to include the
processor.

3) Click the cell where the column and row intersect. When a Y appears, the
processor is included in the group.

To Delete a Group

1) Using the mouse or the arrow keys, highlight the group name.

2) Choose Remove.

Multiprocessor Broadcast Commands

Multiprocessing With Code Composer 3-5

3.4 Multiprocessor Broadcast Commands

All commands in the Parallel Debug Manager are broadcast to all target
processors in the current group (see Section 3.3, Grouping Processors). If
the DSP device driver supports synchronous operation, each of the following
commands is synchronized to start at the same time on each processor.

Locked Step

You can use locked step to single step all processors that are not already
running.

Locked Step-Over

You can use locked step-over command to execute step-over on all
processors that are not already running.

Locked Step-Out

If all the processors are inside a subroutine, you can use locked step-out to
execute the Step-Out command on all the processors that are not already
running.

Synchronous Run

This command sends a global Run command to all processors that are not
already running.

Synchronous Halt

This command halts all processors simultaneously.

Synchronous Animation

This command starts animating all the processors that are not already
running. See Section 2.7, Run, Halt, Animate, Run Free for details.

Broadcasting GEL Commands

3-6

3.5 Broadcasting GEL Commands

To broadcast GEL commands

1) Select Group->Broadcast Command from the Parallel Debug Manager
menu. This opens the Broadcast Command dialog box.

2) Enter a built-in GEL function or user-defined GEL function in the
command box (see Section 12.5, Loading/Unloading GEL Functions).

3) Click OK or press Enter to broadcast the command to each processor in
the current group.

Note: Broadcast GEL Commands

Broadcast GEL commands are restricted to processors whose parent
window is also open.

Auto-Executing GEL Functions

Multiprocessing With Code Composer 3-7

3.6 Auto-Executing GEL Functions

GEL functions allow you to configure the development environment according
to your needs. For example, you can configure a control window for a specific
CPU to initialize the wait states for the memory system each time the window
opens. Or you can set up a number of tasks you want performed each time
you open the control window.

Instead of loading your GEL file using the File->Load GEL command each
time and then executing the GEL function, you can use the Open->CPU
command to pass a GEL file name to each control window each time you
open it. This informs the control window to scan in and load the specified GEL
file. You may execute the function as well. Do this by naming one of your GEL
functions in the specified file StartUp(). When a GEL file is loaded into Code
Composer, the file is searched for a function defined as StartUp(). If the
function is found, it is automatically executed.

To Autoload and Execute a GEL File When You Open a Control Window

1) In the Parallel Debug Manager menu, select Options->Startup to open
the StartUp Files dialog box. This dialog box lists all the CPUs and
provides a field where you can specify the GEL file for each CPU.

2) In this field, add the name of the GEL file that contains your GEL
functions. For example, cpu_a myfile.gel.

Now each time you open the control window for cpu_a, the GEL file myfile.gel
is automatically scanned and loaded into Code Composer. If you have a GEL
function defined as StartUp(), it is also executed.

If you have a common file that all your CPUs load on startup, you can place
this filename in the command line of the Properties dialog box of the Code
Composer icon.

Auto-Executing GEL Functions

3-8

To Autoload a Workspace and Associated GEL Files On Start Up

Code Composer allows you to load both your workspace and the associated
GEL files immediately on start up, as follows:

1) In the Parallel Debug Manager menu, select Options->Startup.

2) In the StartUp Files dialog box, enter the GEL file names corresponding
to each CPU and click OK.

3) Save the setup as a workspace by selecting Save Workspace from the
File menu.

4) In the Save As dialog box, enter the name of the workspace (with the .wks
extension) in the File name field (see Section 2.15.1, Automatically
Loading Your Workspace).

5) Click Save.

Global Breakpoints

Multiprocessing With Code Composer 3-9

3.7 Global Breakpoints

Global breakpoints allow breakpoints on a given processor to halt other
processors in a multiprocessor environment. JTAG-based device drivers use
the EMU0/1 pins that trigger other processors to stop at the same time. When
this option is enabled, all processors in the current group halt if any processor
included in the current group encounters a breakpoint.

To enable global breakpoints on all processors in the current group, select
Options->Global Breakpoints from the Parallel Debug Manager menu bar. A
check mark beside this menu item indicates that global breakpoints are
enabled. By changing the current group (see Section 3.3, Grouping
Processors), you can control which processors are triggered by global
breakpoints.

3-10

4-1

Chapter 4

Breakpoints and Probe Points

This chapter describes how you can set breakpoints to control the execution
of your program and how to set Probe Points for signal analysis.

4.1 Breakpoints . 4–2

4.2 Conditional Breakpoints . 4–6

4.3 Hardware Breakpoints. 4–7

4.4 Probe Points . 4–8

4.5 Conditional Probe Points . 4–12

4.6 Hardware Probe Points . 4–13

Topic Page

Breakpoints

4-2

4.1 Breakpoints

Breakpoints stop the execution of the program. When the program is stopped,
you can examine the state of your program, examine or modify variables,
examine the call stack, etc. You can set a breakpoint , by using either the
shortcut button on the Project Toolbar or selecting Debug->Breakpoints from
the menu. The latter brings up the Break/Probe/Profile Points dialog box.
When a breakpoint is set, you can enable or disable it.

4.1.1 Designer Notes (Kernel-Based Code Composer Debugger)

Follow these guidelines to avoid possible corruption of the processor pipeline:

❏ Do not set a breakpoint on any instructions executed as part of a delayed
branch or call.

❏ Do not set a breakpoint on the last one or two instructions before the end
of a block repeat instruction.

4.1.2 Adding and Deleting Breakpoints

To Add a Breakpoint Using the Breakpoint Dialog Box

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) In the Breakpoint Type field, select either Break at Location
(unconditional) or Break at Location if Expression is TRUE (conditional).

3) Enter the location where you want to set the breakpoint, using either of
the following formats:

■ For an absolute address, enter any valid C expression, the name of
a C function, or a symbol name.

■ Enter a breakpoint location based on your C source file. This is
convenient when you do not know where the C instruction ends up in
the executable. The format for entering a location based on the C
source file is as follows: fileName line lineNumber

4) If you selected a conditional breakpoint in step 2, you must enter the
condition in the Expression field.

5) Press the Add button to create a new breakpoint. This causes a new
breakpoint to be created and enabled.

6) Press the OK button to close the dialog box.

Breakpoints

Breakpoints and Probe Points 4-3

To Add a Breakpoint Using the Toolbar

Using the breakpoint button on the toolbar is the easiest way to set and clear
breakpoints at any location in the program. The breakpoint dialog box allows
you to set more complex breakpoints, such as conditional breakpoints or
hardware breakpoints.

1) Put the cursor in the line where you want to set the breakpoint. You can
set a breakpoint in either a Dis-Assembly window or an Edit window
containing C source code.

2) Click the Toggle Breakpoint button on the toolbar. The line is highlighted.

Toggle Breakpoint Button:

To Remove a Breakpoint Using the Toolbar
.

1) Put the cursor in the line containing the breakpoint.

2) Click the Toggle Breakpoint button on the toolbar.

To Change an Existing Breakpoint

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Select a breakpoint in the Breakpoint window. The selected breakpoint is
highlighted and the Breakpoint Type, Location, and Expression fields are
updated to match the selected breakpoint.

3) Edit the breakpoint Type, Location, and/or Expression fields as required.

4) Press the Replace button to change the currently selected breakpoint.

5) Press the OK button to close the dialog box.

To Delete an Existing Breakpoint

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Select a breakpoint in the Breakpoint window.

3) Press the Delete button to delete the breakpoint.

4) Press the OK button to close the dialog box.

Breakpoints

4-4

To Delete All Breakpoints Using the Breakpoint Dialog Box

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Press the Delete All button.

3) Press the OK button to close the dialog box.

To Delete All Breakpoints Using the Toolbar

From the toolbar, press the Remove All Breakpoints button.

Remove All Breakpoints Button:

4.1.3 Enabling and Disabling Breakpoints

When a breakpoint is set, it can be disabled or enabled. Disabling a
breakpoint provides a quick way of suspending its operation while retaining
the location and type of the breakpoint.

To Enable a Breakpoint

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Select the breakpoint you wish to enable from the Breakpoint window.
The checkbox beside the breakpoint is empty to indicate that it is
currently disabled.

3) With the left mouse button, click on the breakpoint checkbox. This adds
a check to the box, indicating that the breakpoint is now enabled.

4) Press the OK button to close the dialog box.

To Disable a Breakpoint

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Select the breakpoint you wish to disable from the list. The breakpoint
checkbox is checked to indicate that it is currently enabled.

3) With the left mouse button, click on the breakpoint checkbox. This
removes the check from the box, indicating that the breakpoint is now
disabled.

4) Press the OK button to close the dialog box.

Breakpoints

Breakpoints and Probe Points 4-5

To Enable All Breakpoints

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Press the Enable All button. This button allows you to quickly enable all
breakpoints in the breakpoint list.

3) Press the OK button to close the dialog box.

To Disable All Breakpoints

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) Press the Disable All button. This button allows you to quickly disable all
breakpoints in the breakpoint list.

3) Press the OK button to close the dialog box.

Conditional Breakpoints

4-6

4.2 Conditional Breakpoints

Every conditional breakpoint has its own conditional expression. When the
location of the conditional breakpoint is reached, the expression is evaluated.
If the result of the expression is false, the processor resumes execution
without updating the display; otherwise, the display is updated as if a
traditional breakpoint were hit.

You can also define GEL (General Extension Language) files to meet
conditions that must be satisfied for a breakpoint to be enabled.

To enter the GEL file name

1) Select Debug->Breakpoints from the menu bar. This causes the Break/
Probe/Profile Points dialog box to appear. The Breakpoints tab selected.

2) From the “Breakpoint type” drop-down list, select “Break at Location if
expression is TRUE”. Only when this selection is made will the
Expression field become active, allowing you to enter the GEL file name.

3) Enter your GEL file name in the Expression field. This ensures that the
breakpoint is only enabled if your condition is met.

For more information on GEL files and their implementation, see Chapter 12,
The General Extension Language (GEL),

Note: Target Processor Halts

The target processor halts while the expression is evaluated by the host.
This means that the target application may not be able to meet real-time
constraints with conditional breakpoints set.

Hardware Breakpoints

Breakpoints and Probe Points 4-7

4.3 Hardware Breakpoints

Hardware breakpoints differ from software breakpoints in that they do not
modify the target program. Hardware breakpoints are useful for setting
breakpoints in ROM memory or breaking on memory accesses instead of
instruction acquisitions. A breakpoint can be set for a particular memory read,
memory write, or memory read or write. Memory access breakpoints are not
shown in the Edit or Memory windows.

Note: Simulator - Hardware Breakpoints Not Supported

Hardware breakpoints cannot be implemented on a simulated DSP target.

Hardware breakpoints can also have a count, which determines the number
of times a location is encountered before a breakpoint is generated. If the
count is1, a breakpoint is generated every time.

To Add a Hardware Breakpoint

1) From the menu, select Debug->Breakpoints. This brings up the Break/
Probe/Profile Points dialog box. The Breakpoints tab is selected.

2) In the Breakpoint type field, choose H/W Break at location for instruction
acquisition breakpoints or choose Break on <bus> <Read|Write|R/W> at
location for a memory access breakpoint.

3) Enter the program or memory location where you want to set the
breakpoint. Use one of the following methods:

■ For an absolute address, you can enter any valid C expression, the
name of a C function, or a symbol name.

■ Enter a breakpoint location based on your C source file. This is
convenient when you do not know where the C instruction is in the
executable. The format for entering in a location based on the C
source file is as follows: fileName line lineNumber

4) Enter the number of times the location is hit before a breakpoint is
generated, in the Count field. Set the count to 1 if you wish to break every
time.

5) Press the Add button to create a new breakpoint. This causes a new
breakpoint to be created and enabled.

6) Press the OK button to close the dialog box.

Probe Points

4-8

4.4 Probe Points

Probe Points allow you to cause an update of a particular window or to read
and write samples from a file that occur at a specific point in your algorithm.
This connects a signal probe to that point in your algorithm. When the Probe
Point is set, you can enable or disable them just like breakpoints.

When a window is created, by default, it is updated at every breakpoint.
However, you can change this so the window is updated only when the
program reaches the connected Probe Point. When the window is updated,
execution of the program is continued.

Along with Code Composer's file I/O capabilities, you can use Probe Points
to connect streams of data to a particular point in the DSP code. When the
Probe Point is reached in the algorithm, data is streamed from a specific
memory area to file or from the file to memory. See Section 5.1, File Input/
Output for information.

Note: Target Processor Halts on Probe Point

The target processor is temporarily halted by the host processor when a
Probe Point is encountered. Therefore, the target application may not be
able to meet real-time constraints when using Probe Points.

4.4.1 Adding and Deleting Probe Points

To Add a Probe Point

You can create Probe Points by placing the cursor on the line in a source file
or Dis-Assembly window and clicking the Probe Point shortcut on the toolbar.
Probe Points must be connected to a window or file (see Section 4.4.2,
Connecting Probe Points). Selecting Debug->Probe Points from the menu
allows you to set more complex Probe Points, such as conditional or
hardware Probe Points.

Toggle Probe Point Button:

Probe Points

Breakpoints and Probe Points 4-9

To Delete an Existing Probe Point

1) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) Select a Probe Point in the Probe Point window.

3) Press the Delete button.

4) Press the OK button to close the dialog box.

To Delete All Probe Points Using the Probe Point Dialog Box

1) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) Press the Delete All button.

3) Press the OK button to close the dialog box.

To Delete All Probe Points Using the Toolbar

From the toolbar, press the Remove All Probepoints button.

Remove All Probepoints Button:

4.4.2 Connecting Probe Points

To Connect a Display Window to a Probe Point

1) Open the window that you want to connect to.

2) Create the Probe Point by placing the cursor on the line where you want
the point set and clicking on the Toggle Probe Point shortcut button on the
toolbar.

Toggle Probe Point Button:

3) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected. In the Probe Point window, the new Probe Point that you have
created appears. This Probe Point indicates it currently has no
connection.

Select this Probe Point to make it current. You can now edit its fields in
the dialog box.

Probe Points

4-10

4) Select a type of Probe Point from the Probe type drop-down list. The
default is unconditional. This means that every time the execution of the
code reaches the Probe Point, its connected file or window is updated
and execution of the code continues after the update. You can change the
Probe Point to a conditional Probe Point to activate the probe only if the
expression is evaluated to be true.

5) Enter the location at which you want to set the Probe Point by using either
of the following methods. If you used the Toggle Probe Point shortcut
button, this field is already filled with the appropriate value.

■ For an absolute address, you can enter any valid C expression, the
name of a C function, or the name of an assembly language label.

■ Enter a Probe Point location based on your C source file. This is
convenient when you do not know where the C instruction is in the
executable. The format for entering in a location based on the C
source file is as follows: fileName line lineNumber

6) If you selected a conditional Probe Point in step 4, then you must enter
the condition in the Expression field.

7) Connect the window or file to the Probe Point. The Connect To drop-down
list contains all the files and windows that can be connected to the Probe
Point. From this list select the appropriate item.

8) Press the Add button to create the new Probe Point or press the Replace
button to modify the existing Probe Point.

4.4.3 Enabling and Disabling Probe Points

Once a Probe Point is set, it can be enabled or disabled. Disabling a Probe
Point provides a quick way of suspending its operation temporarily, while
retaining the location and type of the Probe Point.

Note: Windows Do Not Update

Windows connected to Probe Points that are disabled are not updated.

Probe Points

Breakpoints and Probe Points 4-11

To Enable a Probe Point

1) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) Select the Probe Point you wish to enable from the Probe Point window.
The Probe Point checkbox is empty when the Probe Point is disabled.

3) With the left mouse button, click on the Probe Point checkbox. This puts
a check in the box, indicating that the Probe Point is now enabled.

4) Press the OK button to close the dialog box.

To Disable a Probe Point

1) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) Select the Probe Point you wish to disable from the Probe Point window.
The Probe Point checkbox is checked when the Probe Point is enabled.

3) With the left mouse button, click on the Probe Point checkbox. This
removes the check from the box, indicating that the Probe Point is now
disabled.

4) Press the OK button to close the dialog box.

To Enable All Probe Points

1) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) Press the Enable All button. All checkboxes now contain a check mark.

3) Press the OK button to close the dialog box.

To Disable All Probe Points

1) Select Debug->Probe Points from the menu. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) Press the Disable All button. All checkboxes change to empty.

3) Press the OK button to close the dialog box.

Conditional Probe Points

4-12

4.5 Conditional Probe Points

Every conditional Probe Point has its own conditional expression. When the
processor reaches the location of the conditional Probe Point, it evaluates the
expression. If the result of the expression is false, the processor resumes
execution as if it did not encounter a Probe Point. If the expression is true, it
performs as if a standard Probe Point were hit (see Section 4.4, Probe
Points).

You can also connect GEL (General Extension Language) files that you
define to meet conditions that must be satisfied for the particular Probe Point
to be enabled.

To enter the GEL file name

1) Select Debug->Probe Points from the menu bar. This causes the Break/
Probe/Profile Points dialog box to appear. The Probe Points tab is
selected.

2) From the “Probe type” drop-down list, select “Probe at Location if
expression is TRUE”. Only when this selection is made will the
Expression field become active, allowing you to enter the GEL file name.

3) Enter the GEL file name in the Expression field. This ensures that the
Probe Point is only enabled if your condition is met.

For more information on GEL files and their implementation, see Chapter 12,
The General Extension Language (GEL).

Hardware Probe Points

Breakpoints and Probe Points 4-13

4.6 Hardware Probe Points

Hardware Probe Points operate the same as regular Probe Points, except
they are implemented using hardware breakpoints instead of software
breakpoints (see Section 4.3, Hardware Breakpoints). Hardware Probe
Points are useful for setting probes in ROM memory or tracing memory
accesses.

Note: Target Processor Halts on Probe Point

The target processor is temporarily halted by the host processor when it
encounters a hardware Probe Point. Therefore, the target application may
not be able to meet real-time constraints when using hardware Probe
Points.

Note: Simulator - Hardware Probe Points Not Supported

Hardware breakpoints (and thus Probe Points) cannot be implemented on
a simulated DSP target.

To Trace Memory Accesses

The following steps allow you to create a file object that stores the data at the
memory location you wish to trace (see Section 5.1, File Input/Output).

1) From the menu, select File->File I/O. The File I/O dialog box appears.

2) Press the Add Probepoint button. The Break/Probe/Profile Points dialog
box appears with the Probe Points tab selected.

3) In the Probe type field from the drop-down list, select probe on <bus>
<Read|Write|R/W> at location.

4) In the Location field, enter the memory location you want to trace.

5) Select the file object from the Connect To drop-down list.

6) Press the Add button to create and enable a new Probe Point.

7) Press the OK button to close the dialog box.

4-14

5-1

Chapter 5

Using the File Input/Output Capabilities

This chapter describes how you can stream files into your actual or simulated
DSP target as signals. It also tells you how to load and store PC files with
target memory values.

5.1 File Input/Output . 5–2

5.2 Loading a Data File . 5–7

5.3 Storing a Data File . 5–7

Topic Page

File Input/Output

5-2

5.1 File Input/Output

Code Composer allows you to stream, or transfer, data to or from the actual/
simulated DSP target from a PC file. This is a great way to simulate your code
using known sample values. The File I/O feature uses the Probe Point
concept, which allows you to extract/inject samples or take a snapshot of
memory locations at a point you define (Probe Point). A Probe Point can be
set at any point in your algorithm (similar to the way a breakpoint is set). When
the execution of the program reaches a Probe Point, the connected object
(whether it is a file, graph, or memory window) is updated. Once the
connected object is updated, execution continues. Using this concept, if we
set a Probe Point at a specific point in the code and then connect a file to it,
you can implement file I/O functionality.

You can associate a file with either an input or an output signal. At a specific
Probe Point, a stream of data can be either read from or written to a specified
file.

Note: Real-Time Data Transfer

File I/O does not support real-time data transfer.

To Stream Data To/From a File

1) Before you specify information on the file, set a Probe Point by placing
your cursor at the point where you want to set the Probe Point. Press the
Toggle Probe-point button on the Project toolbar. Leave the Probe Point
unconnected. The Probe Point tells the Code Composer debugger when
you want to start streaming data from/to the file. That is, once the
execution of the code reaches this point, the Code Composer debugger
updates (or reads from) the file that is connected to the Probe Point.
When it is finished, execution continues.

Toggle Probe Point:

2) Select File->File I/O from the menu. A File I/O dialog box appears. The
File I/O dialog prompts you for specific information. Choose either the File
Input or the File Output tab.

File Input/Output

Using the File Input/Output Capabilities 5-3

3) Press the Add File button under either the File Input or the File Output
tab. The File Input dialog box appears.

❏ Navigate to the folder that contains the file you wish to use.

❏ Highlight the file name in the main window of the dialog; the name
appears in the File name field. The data file can be either a COFF
object file or a Code Composer data file (see Section 5.1.2, Data File
Formats).

❏ Click Open. The file name appears in the File I/O dialog box. You can
repeat this procedure to select additional file for either File Input or
File Output.

4) When you insert a file in the File I/O dialog box, it is not connected to a
Probe Point. Notice that the Probepoint field shows the words “Not
Connected”.

To connect a file to a Probe Point, press the Add Probepoint button. The
Break/Probe/Profile Points dialog box appears with the Probe Points tab
selected.

❏ In the Probe Point list, highlight the Probe Point you want to connect
to. Notice that the Probe Point has “No Connection”.

❏ From the Connect To drop-down list, select the appropriate file.

❏ Click Replace. Notice that the Probe Point list now shows that the
Probe Point is connected to the file you have selected.

❏ Click OK. The Probepoint field in the File I/O dialog box show the
word “Connected” when a file has been successfully connected to a
Probe Point.

5) In the File I/O dialog box, enter values in the Address and Length fields
for each file selected.

The Address field specifies where you want the data transferred to (File
Input) or from (File Output). You can enter either a valid label or a numeric
address in this field.

The Length field indicates how many samples are to be transferred to
(File Input) or from (File Output) the target board every time the selected
Probe Point is reached.

You can enter affny valid C expression in the Address and Length fields.
These expressions are recalculated every time samples are read from or
written to the target. This means that if you enter a symbol in this field that
later changes in value, you do not have to reenter this parameter.

6) Click OK. The parameters you have entered will be verified.

File Input/Output

5-4

Wrap Around Mode

Under the File Input tab, you can select the Wrap Around checkbox. You can
use wrap around mode to loop a file so that when the end of the file is
reached, access starts from the top. This feature is useful when you want to
generate a periodic signal from a file. If wrap around mode is not selected and
the end of file is reached, you are prompted with a message indicating the
end of file condition and the DSP program is halted.

File Input/Output

Using the File Input/Output Capabilities 5-5

5.1.1 File I/O Controls

When you enter data in the File I/O dialog box and click OK, control windows
appear that allow you to monitor and control the progress of the file I/O
activity.

The following are features of the control windows:

❏ Play button . Resumes file I/O transactions after a pause.

❏ Stop button . Halts all transfer of data from/to the file regardless of
whether a Probe Point was hit or not. This button can be used to
temporarily halt file I/O transfers.

❏ Rewind to Beginning button . Resets the file. For file input, the next
samples are read from the top of the file. For file output, all existing
samples are deleted and the new samples are written to the top of the file.

❏ Fast Forward button . Simulates a Probe Point hit. When you press this
button, the same I/O occurs as when the target hits a Probe Point.

❏ File I/O progress field . Shows the progress of file transactions. For a file
input, a progress bar indicates the percentage of samples that has been
read from the file and written to the target. For a file output, a number
indicates the number of samples that have currently been written to the
file.

5.1.2 Data File Formats

The commands File->Data->Load, File->Data->Store, and File->File I/O all
use the file formats: COFF and Code Composer data file.

COFF. Binary file that uses Common Object File Format (COFF). This is the
most compact way of storing large blocks of data from the PC.

Code Composer data file . Text file that uses one line of header information
and stores the data as one sample per line. The data can be in any of the
following formats:

❏ Hexadecimal
❏ Integer
❏ Long
❏ Float

File Input/Output

5-6

The header information for data files uses the following syntax, where items
in italics are variables:

MagicNumber Fixed at 1651.

Format A number from 1 to 4, indicating the format of the
samples in the file. This number represents a data
format: hexadecimal, integer, long, or float.

StartingAddress The starting address of the block that was saved.

PageNum The page number the block was taken from.

Length The number of samples in the block.

All header values are assumed to be TI-style hexadecimal values.

The following is an example of a Code Composer data file:

1651 1 800 1 10
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

Note: Header Information Override

Header values specify only the default address and length. When you use
the File->Data->Load command to load a file into memory, the Code
Composer debugger gives you a chance to override these values. When
using the Code Composer data file format with file I/O capabilities, any
information you enter in the File I/O dialog box (Address and Length)
automatically overrides the Code Composer data file header information.
You do not need to set the header information for each file as long as the
header includes the following value: 1651 1 0 0 0.

MagicNumber Format Starting Address PageNum Length

Loading a Data File

Using the File Input/Output Capabilities 5-7

5.2 Loading a Data File

A data file can be loaded into the target board at any valid address. The data
file can be either a COFF object file or a Code Composer data file.

To Load a Data File

1) Select File->Data->Load from the menu. The Load Data dialog box
appears.

2) If the data file is not visible in the window, navigate to the file you wish to
load. Select the file name and then click Open. The Loading File into
Memory dialog box appears.

3) In the Loading File into Memory dialog, specify the Address where you
want the data to be loaded and the Length of the data.

4) Click OK.

All the input fields are C expression input fields.

5.3 Storing a Data File

Memory values from the target board can be stored in a data file, which can
be either a COFF object file or a Code Composer data file.

To Store Data to a File

1) Select File->Data->Store from the menu. The Store Data dialog box
appears.

2) Specify a data file name and then click Save. The Storing Memory into
File dialog box appears.

3) In the Storing Memory into File dialog, specify the starting Address and
the Length of the data you want to store.

4) Click OK.

All the input fields are C expression input fields.

5-8

6-1

Chapter 6

The Graph Window

Code Composer incorporates an advanced signal analysis interface that
enables developers to monitor signal data critically and thoroughly. The new
features are useful in developing applications for communications, wireless,
image processing, as well as general DSP applications.

This chapter describes how you can use the graphing capabilities of Code
Composer to view signals on your actual/simulated target DSP system.

6.1 Time/Frequency . 6–2

6.2 Constellation Diagram. 6–19

6.3 Eye Diagram. 6–25

6.4 Image . 6–33

Topic Page

Time/Frequency

6-2

6.1 Time/Frequency

The graph menu contains many options that allow you to be flexible in how
you display your data. You can use a time/frequency graph to view signals in
either the time or frequency domain. For frequency domain analysis, the
display buffer is run through an FFT routine to give a frequency domain
analysis of the data. Frequency graphs include FFT Magnitude, FFT
Waterfall, Complex FFT, and FFT Magnitude and Phase. In time domain
analysis, no preprocessing is done on the display data before it is graphed.
Time domain graphs can be either single or dual time.

Select View->Graph->Time/Frequency to view the Graph Property Dialog
box. Field names appear in the left column. You can adjust the values as
needed in the right column, then click OK. The graph window appears with
the properties you have set. You can change any of these parameters from
the graph window by right-clicking the mouse, selecting Properties, and
adjusting the parameters as needed. You can also update the graph at any
point in your program. (See Section 4.4.2, Connecting Probe Points for more
details).

All input fields are C expression input fields. An expression containing a
symbol name can be used for all fields requiring numerical inputs, such as the
start address and acquisition buffer size. For more information, see Section
2.3.4.1, Using Symbols within Expressions.

6.1.1 How the Time/Frequency Graph Works

There are two buffers associated with the graph window: the acquisition
buffer and the display buffer. The acquisition buffer resides on the actual/
simulated target board. It contains the data that you are interested in. When
a graph is updated, the acquisition buffer is read from the actual/simulated
target board and the display buffer is updated. The display buffer resides in
the host memory so it keeps a history of the data. The graph is generated
from the data in the display buffer.

When you enter your parameters and press OK, the graph window receives
an acquisition buffer of DSP data of the length you entered in the Acquisition
Buffer Size field. This begins at the location in the Start Address field in the
DSP data memory space. A display buffer of size Display Data Size is
allocated within the host memory with all its values initialized to 0.

If you enable the Left-Shifted Data Display field, the entire display buffer is left
shifted by the value in the Acquisition Buffer Size field, with the values of the
DSP acquisition buffer shifted in from the right end. The values of the display
buffer are overwritten by the DSP acquisition buffer.

Time/Frequency

The Graph Window 6-3

Left-shifted data display is useful when you process a signal serially. Although
the samples are only available one at a time, left-shifted data display lets you
view a history of the samples. When the associated Probe Point is reached
(see Section 4.4, Probe Points) a block of DSP data is read and the display
is updated.

The following sections describe input fields in the Graph Property Dialog box.

6.1.2 Display Type

The Display Type option in the Graph Property Dialog box contains several
options in the drop-down menu in the right column. Some options for this field
are associated with constellation (Section 6.2, Constellation Diagram), eye
(Section 6.3, Eye Diagram), or image graphs (Section 6.4, Image).

Selecting some graph options causes additional fields to appear in the Graph
Property Dialog box.

❏ Single Time. Plots the data in the display buffer on a magnitude versus
time graph with no preprocessing. A single time trace of a signal is
displayed on the graph. When you enable this option, the following fields
appear in the Graph Property Dialog Box:

■ Time Display Unit. Specifies the unit of measure for the time axis of
the graph. Select among the values: s (second), ms (millisecond), us
(microsecond), and sample (displays the values on the time axis in
terms of the display buffer index).

■ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. The
acquisition buffer then updates the display buffer, which is graphed.
You can enter any valid C expression in the Start Address field. This
expression is recalculated every time samples are read from the
actual/simulated target. This means that if you enter a symbol in this
field and the symbol later changes value, you do not have to reenter
this parameter.

■ Index Increment. Specifies the sample index increment for the data
graph. A specification in this field is equivalent to a sample offset for
noninterleaved sources. This permits you to extract signal data from
multiple sources using a single graph. An index increment of 2, for
instance, corresponds to a sample offset value of 2, which in turn
graphically displays every other sample in the acquisition buffer. You
can, therefore, specify multiple data sources for display by entering
the corresponding offset value in this field. This option provides a
general specification for interleaved sources.

Time/Frequency

6-4

❏ Dual Time . Plots the data in the display buffer on a magnitude versus
time graph with no preprocessing. A dual time trace of signal(s) is
displayed on the graph, allowing you to plot two time domain traces in a
single graph window. When you enable this option, the following
additional options appear in the Graph Property Dialog Box.

■ Time Display Unit. Specifies the unit of measure for the time axis of
the graph. Select among the values: s (second), ms (millisecond), us
(microsecond), and sample (displays the values on the time axis in
terms of the display buffer index).

■ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. Toggling this display option allows a single buffer
input to represent two sources. Setting this option to Yes implies a
2-source input buffer, where the odd samples represent the first
source and even samples represent the second. Setting this option
to Yes creates the following additional field in the Graph Property
Dialog box:

❚ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. The
acquisition buffer then updates the display buffer, which is
graphed. You can enter any valid C expression in the Start
Address field. This expression is recalculated every time
samples are read from the actual/simulated target. This means
that if you enter a symbol in this field and the symbol later
changes value, you do not have to reenter this parameter.

Setting Interleaved Data Sources to No creates the following
additional fields:

❚ Start Address - upper display

❚ Start Address - lower display

❚ Index Increment. Specifies the sample index increment for the
data graph. A specification in this field is equivalent to a sample
offset for noninterleaved sources. This permits you to extract
signal data from multiple sources using a single graph. An index
increment of 2, for instance, corresponds to a sample offset value
of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data
sources for display by entering the corresponding offset value in
this field. This option provides a general specification for
interleaved sources.

Time/Frequency

The Graph Window 6-5

❏ FFT Magnitude . Performs an FFT on the data in the display buffer and
plots a magnitude versus frequency graph. The FFT routine uses the FFT
frame size (rounded up to the nearest power of 2) to determine the
minimum number of samples. When you select the FFT Magnitude
display data type, the following additional items appear in the Graph
Property Dialog box:

■ Frequency Display Unit. Specifies the unit of measure for the
frequency axis of the graph. Select among the values: Hz (Hertz),
kHz (kiloHertz), and MHz (megaHertz).

■ Signal Type. Specifies the type of signal source to produce a
particular graph. Two options are available for the Signal Type
property: Real (corresponding to a single source display as in the
case of a single time display) and Complex (corresponding to two
signal sources). When you select Complex, the Graph Property
Dialog box displays the Interleaved Data Source option.

■ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. Toggling this display option allows a single buffer
input to represent two sources. Setting this option to Yes implies a
2-source input buffer, where the odd samples represent the first
source and even samples represent the second. Setting this option
to Yes creates the following additional field in the Graph Property
Dialog box:

❚ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. This
acquisition buffer then updates the display buffer, which is
graphed. You can enter any valid C expression in the Start
Address field. This expression is recalculated every time
samples are read from the actual/simulated target. This means
that if you enter a symbol in this field and the symbol later
changes value, you do not have to reenter this parameter.

Time/Frequency

6-6

Setting Interleaved Data Sources to No creates the following
additional fields:

❚ Start Address - real data

❚ Start Address - imaginary data

❚ Index Increment. Specifies the sample index increment for the
data graph. A specification in this field is equivalent to a sample
offset for noninterleaved sources. This permits you to extract
signal data from multiple sources using a single graph. An index
increment of 2, for instance, corresponds to a sample offset value
of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data
sources for display by entering the corresponding offset value in
this field. This option provides a general specification for
interleaved sources.

■ FFT Framesize. Specifies the number of samples used in each FFT
calculation.

Note: Acquisition Buffer a Different Size

The acquisition buffer can be a different size than the FFT frame size.

■ FFT Order. Specifies the FFT size = 2 FFT order

■ FFT Windowing Function . You may choose among the following
windowing functions: Rectangle, Bartlett, Blackman, Hanning,
Hamming. These are performed on the data before the FFT
calculation is performed.

■ Display Peak and Hold . Allows you to enter more information on
how the history of the samples is graphically maintained.

Time/Frequency

The Graph Window 6-7

❏ Complex FFT . Consists of a real and imaginary data portion displayed
on two graphs that are contained in the same graph display window.
When you select the Complex FFT option, the following additional items
appear in the Graph Property Dialog box:

■ Frequency Display Unit. Specifies the unit of measure for the
frequency axis of the graph. Select among the values: Hz (Hertz),
kHz (kiloHertz), and MHz (megaHertz).

■ Signal Type. Specifies the type of signal source to produce a
particular graph. Two options are available for the Signal Type
property: Real (corresponding to a single source display as in the
case of a single time display) and Complex (corresponding to two
signal sources). When you select Complex, the Graph Property
Dialog box displays the Interleaved Data Sources option.

■ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. This field is present if the Signal Type field is set
to Complex. Toggling this display option allows a single buffer input
to represent two sources. Setting this option to Yes implies a
2-source input buffer, where the odd samples represent the first
source and even samples represent the second. Setting this option
to Yes creates the following additional field in the Graph Property
Dialog box:

❚ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. This
acquisition buffer then updates the display buffer, which is
graphed. You can enter any valid C expression in the Start
Address field. This expression is recalculated every time
samples are read from the actual/simulated target. This means
that if you enter a symbol in this field and the symbol later
changes value, you do not have to reenter this parameter.

Time/Frequency

6-8

Setting Interleaved Data Sources to No creates the following
additional fields:

❚ Start Address - real data

❚ Start Address - imaginary data

❚ Index Increment. Specifies the sample index increment for the
data graph. A specification in this field is equivalent to a sample
offset for noninterleaved sources. This permits you to extract
signal data from multiple sources using a single graph. An index
increment of 2, for instance, corresponds to a sample offset value
of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data
sources for display by entering the corresponding offset value in
this field. This option provides a general specification for
interleaved sources.

■ FFT Framesize. Specifies the number of samples used in each FFT
calculation.

Note: Acquisition Buffer a Different Size

The acquisition buffer can be a different size than the FFT frame size.

■ FFT Order. Specifies the FFT size = 2 FFT order

■ FFT Windowing Function. You may select among the following
windowing functions: Rectangle, Bartlett, Blackman, Hanning,
Hamming. These are performed on the data before the FFT
calculation is performed.

Time/Frequency

The Graph Window 6-9

❏ FFT Magnitude and Phase. Consists of a magnitude and phase portion
displayed in the same graph display window. When you select the FFT
Magnitude and Phase option, the following additional options appear in
the Graph Property Dialog box:

■ Frequency Display Unit. Specifies the unit of measure for the
frequency axis of the graph. Select among the values: Hz (Hertz),
kHz (kiloHertz), and MHz (megaHertz).

■ Signal Type. Specifies the type of signal source to produce a
particular graph. Two options are available for the Signal Type
property: Real (corresponding to a single source display as in the
case of a single time display) and Complex (corresponding to two
signal sources). When you select Complex, the Graph Property
Dialog box displays an additional option:

■ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. This field appears when the Signal Type field is set
to Complex. Toggling this display option allows a single buffer input
to represent two sources. Setting this option to Yes implies a
2-source input buffer, where the odd samples represent the first
source and even samples represent the second. Setting this option
to Yes creates the following additional field in the Graph Property
Dialog box:

❚ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. This
acquisition buffer then updates the display buffer, which is
graphed. You can enter any valid C expression in the Start
Address field. This expression is recalculated every time
samples are read from the actual/simulated target. This means
that if you enter a symbol in this field and the symbol later
changes value, you do not have to reenter this parameter.

Time/Frequency

6-10

Setting Interleaved Data Sources to No creates the following
additional fields:

❚ Start Address - real data

❚ Start Address - imaginary data

❚ Index Increment. Specifies the sample index increment for the
data graph. A specification in this field is equivalent to a sample
offset for noninterleaved sources. This permits you to extract
signal data from multiple sources using a single graph. An index
increment of 2, for instance, corresponds to a sample offset value
of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data
sources for display by entering the corresponding offset value in
this field. This option provides a general specification for
interleaved sources.

■ FFT Framesize. Specifies the number of samples used in each FFT
calculation.

Note: Acquisition Buffer a Different Size

The acquisition buffer can be a different size than the FFT frame size.

■ FFT Order. Specifies the FFT size = 2 FFT order

■ FFT Windowing Function. You may select among the following
windowing functions: Rectangle, Bartlett, Blackman, Hanning,
Hamming. These are performed on the data before the FFT
calculation is performed.

Time/Frequency

The Graph Window 6-11

❏ FFT Waterfall. Performs an FFT on the data in the display buffer and
plots a magnitude versus frequency graph as a frame. A chronological
series of these frames forms an FFT waterfall graph. When you select the
FFT Waterfall option, the following additional options appear in the Graph
Property Dialog box:

■ Frequency Display Unit. Specifies the unit of measure for the
frequency axis of the graph. Select among the values: Hz (Hertz),
kHz (kiloHertz), and MHz (megaHertz).

■ Signal Type. Specifies the type of signal source to produce a
particular graph. Two options are available for the Signal Type
property: Real (corresponding to a single source display as in the
case of a single time display) and Complex (corresponding to two
signal sources). When you select Complex, the Graph Property
Dialog box displays an additional option:

■ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. This field appears when the Signal Type field is set
to Complex. Toggling this display option allows a single buffer input
to represent two sources. Setting this option to Yes implies a
2-source input buffer, where the odd samples represent the first
source and even samples represent the second. Setting this option
to Yes creates the following additional field in the Graph Property
Dialog box:

❚ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. This
acquisition buffer then updates the display buffer, which is
graphed. You can enter any valid C expression in the Start
Address field. This expression is recalculated every time
samples are read from the actual/simulated target. This means
that if you enter a symbol in this field and the symbol later
changes value, you do not have to reenter this parameter.

Time/Frequency

6-12

Setting Interleaved Data Sources to No creates the following
additional fields:

❚ Start Address - real data

❚ Start Address - imaginary data

❚ Index Increment. Specifies the sample index increment for the
data graph. A specification in this field is equivalent to a sample
offset for noninterleaved sources. This permits you to extract
signal data from multiple sources using a single graph. An index
increment of 2, for instance, corresponds to a sample offset value
of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data
sources for display by entering the corresponding offset value in
this field. This option provides a general specification for
interleaved sources.

■ FFT Framesize. Specifies the number of samples used in each FFT
calculation.

Note: Acquisition Buffer a Different Size

The acquisition buffer can be a different size than the FFT frame size.

■ FFT Order. Specifies the FFT size = 2FFT order. There is 0 padding if
FFT frame size is smaller than FFT order

■ FFT Windowing Function. You may select among the following
windowing functions: Rectangle, Bartlett, Blackman, Hanning,
Hamming. These are performed on the data before the FFT
calculation is performed.

■ Number of Waterfall Frames. Specifies the number of waterfall
frames to be displayed.

■ Waterfall Height(%). Specifies the percentage of vertical window
height used to display a waterfall frame.

Time/Frequency

The Graph Window 6-13

6.1.3 Graph Title

You can identify each graph that you create with a unique title. This helps to
differentiate results when there are many windows open.

6.1.4 Data Page

If your actual/simulated target consists of multiple pages, such as program,
data and I/O, you can specify pages using the Data Page options. From the
list, select either Prog, Data, or I/O. This indicates whether the page of
variable/memory location graphically displayed is the program, data or I/O
page.

Note: Simulator - I/O Memory Page Not Supported

The simulator for 'C2xx/'C5x/'C54x DSPs does not support the I/O memory
page.

6.1.5 Start Address

This is the starting location (on the actual/simulated target board) of the
acquisition buffer containing the data to be graphed. When the graph is
updated, the acquisition buffer, starting at this location, is fetched from the
actual/simulated target board. This acquisition buffer then updates the display
buffer, which is graphed.

You can enter any valid C expression in the Start Address field. This
expression is recalculated every time samples are read from the actual/
simulated target. This means that if you enter a symbol in this field and the
symbol later changes value, you do not have to reenter this parameter.

Depending on values for the Display Type field and the status of the
Interleaved Data Sources field, there may be either one or two starting
addresses required in this field. See Section 6.1.2, Display Type for more
information.

Time/Frequency

6-14

6.1.6 Acquisition Buffer Size

This is the size of the acquisition buffer you are using on your actual/
simulated target board. For example, if you are processing samples one at a
time, enter a 1 in this field. Enable the Left-Shifted Data Display field and
connect the display to the correct location in your DSP program. (See Section
4.4.2, Connecting Probe Points for more details.)

If your program processes an entire frame at one time (more than one
sample) and you are only interested in that frame, enter the same value in the
Acquisition Buffer Size and the Display Data Size fields. Then turn off the
Left-Shifted Data Display option.

When a graph is updated, the acquisition buffer is read from the actual/
simulated target board and updates the display buffer. The display buffer is
graphed.

You can enter any valid C expression for the Acquisition Buffer Size field. This
expression is recalculated every time samples are read from the actual/
simulated target. Therefore, if you enter a symbol in this field and the symbol
later changes values, you do not have to reenter this parameter.

6.1.7 Display Data Size

This is the size of the display buffer that you use. The contents of the display
buffer are graphed on your screen. The display buffer resides on the host, so
a history of your signal can be displayed even though it no longer exists on
the actual/simulated target board.

The size of the display is determined differently, depending on what you have
selected for the time/frequency domain (Display Type) option. For a time
domain graph, Display Data Size contains the number of samples that the
graph displays. No preprocessing is done on the display buffer. Usually
Display Data Size is greater than or the same as Acquisition Buffer Size. If
Display Data Size is greater than Acquisition Buffer Size, the buffer data can
be left shifted into the display buffer. For a frequency domain graph (FFT
Magnitude, Complex FFT, FFT Magnitude and Phase), Display Data Size is
represented by the FFT frame size (rounded up to the nearest power of 2)
used for the FFT frequency analysis (see Section 6.1.2, Display Type).

You can enter any valid C expression for the Display Data Size field. This
expression is recalculated every time samples are read from the actual/
simulated target. Therefore, if you enter a symbol in this field which later
changes values, you do not have to reenter this parameter.

Time/Frequency

The Graph Window 6-15

6.1.8 DSP Data Type

This field allows you to select among the following data types:

❏ 32-bit signed integer
❏ 32-big unsigned integer
❏ 32-bit floating point
❏ 32-bit IEEE floating point
❏ 16-bit signed integer
❏ 16-bit unsigned integer
❏ 8-bit signed integer
❏ 8-bit unsigned integer

You can use a signed integer in combination with the Q-Value to interpret
fixed-point values.

6.1.9 Q-Value

This field contains a nonzero Q-Value, which are fractional representations of
integer values.The data on the actual/simulated target is interpreted using the
Q-Value. They are formed by inserting a decimal space in the binary
representation of an integer, resulting in greater precision. The Q-Value
indicates amount of the displacement, according to the formula:

New_integer_value = 2Q-Value

A Q-Value of xx indicates a signed 2s complement integer whose decimal
point is displaced xx places from the least significant bit (LSB).

6.1.10 Sampling Rate (Hz)

This field contains the sampling frequency for acquisition buffer samples,
such as for analog to digital conversion. The sampling rate is used to
calculate the time and frequency values displayed on the graph.

For a time domain graph, this field calculates the values for the time axis. The
axis is labeled from 0 to (Display Data Size * 1/Sampling Rate).

For a frequency domain graph (FFT Magnitude, Complex FFT, FFT
Magnitude and Phase), this field contains the number of samples (rounded
down to the nearest power of 2) used for the FFT frequency analysis. The
graph displays the frequency contents of the signal in the range from 0 to
Sampling Rate/2.

Time/Frequency

6-16

6.1.11 Plot Data From

This field determines the ordering of the data within the acquisition buffer. You
can toggle between the following options: Left to Right, where the first sample
in the acquisition buffer is considered the newest or most recently arriving,
and Right to Left where the first sample in the acquisition buffer is considered
the oldest.

6.1.12 Left-Shifted Data Display

This option controls how the acquisition buffer is merged into the display
buffer. You can select either Yes to enable the option or No to disable it.

When a graph is updated, the acquisition buffer is fetched from the actual/
simulated target board and merged into the display buffer. If you enable
Left-Shifted Data Display, the entire display buffer is left shifted, with the
values of the actual/simulated target board acquisition buffer shifted in from
the right end. Note that at start up, all values in the display buffer are initialized
to 0. If the Left-Shifted Data Display option is not enabled, then the values of
the display buffer are overwritten by the actual/simulated target board
acquisition buffer.

The Left-Shifted Data Display option is useful when you are processing a
signal in serial fashion. Although the samples are only available one at a time,
the Left-Shifted Data Display option lets you view a history of the samples.

When a Probe Point associated with the window is reached (see Section
4.4.2, Connecting Probe Points for details), a block of actual/simulated target
board data is read and the display is updated. If you left shift the data into the
display, make sure that the graph window is only updated when the actual/
simulated target board data is valid.

6.1.13 Display Peak and Hold

This option allows you to view the peak values of successive graphs. You can
select either On to enable the option or Off to disable it.

If you enable the Display Peak and Hold option, a history of peaks attained
through successive data acquisitions/updates is maintained. When a new
buffer is acquired, a new FFT calculation is performed and if a particular
sample magnitude in this new calculation falls above a peak value of the
previous sample graphically displayed, the new graph is adjusted to contain
that peak. If the sample attains a value smaller than the peak, the graph's
current peak value is maintained.

Time/Frequency

The Graph Window 6-17

If you disable the Display Peak and Hold option, no adjustments are made to
maintain the sample graphical peak values. The displayed FFT magnitude
reflects only calculations on the current frame buffer.

6.1.14 Autoscale

This option allows the maximum value of the Y axis to be determined
automatically. You can select either On to enable the option or Off to disable it.

If you enable Autoscale, the graph uses the maximum value in the display
buffer to set the Y axis range and graphs all values accordingly. If you disable
Autoscale, an additional field appears in the Graph Property Dialog box:

❏ Maximum Y-Value. Sets the maximum value of the Y-axis displayed on
the graph.

6.1.15 DC Value

This option sets the middle point of the Y axis range; the Y axis is symmetrical
about the value you enter in the DC Value field. This value is enabled
regardless of whether the Autoscale field is enabled. This field is ignored for
FFT Magnitude displays.

6.1.16 Axes Display

This option turns the X and Y axes in the graph window on and off. Selecting
On enables the axes and Off disables them.

6.1.17 Status Bar Display

This option turns the status bar display at the bottom of the graph window on
and off. Selecting On enables the display and Off disables it.

6.1.18 Magnitude Display Scale

This field sets the scaling function used for data values in the graph. You may
choose between the following options:

❏ Linear: Uses unmodified integer values
❏ Logarithmic: Uses the function 20 × log(x)

Time/Frequency

6-18

6.1.19 Data Plot Style

This field sets how the data is visually represented in the graph. You may
choose between the following options:

❏ Line: Connects data values linearly
❏ Bar: Uses vertical lines to display values

6.1.20 Grid Style

This field sets the pattern of horizontal and vertical background lines in the
graph. You may choose among the following options:

❏ No Grid
❏ Zero Line: Displays only the 0 axes
❏ Full Grid: Displays the full grid

6.1.21 Cursor Mode

This field sets the cursor's appearance and function in the graph. You may
choose among the following options:

❏ No Cursor

❏ Data Cursor: Appears on the graph screen with the cursor coordinates in
the graph status bar.

❏ Zoom Cursor: Allows you to enlarge areas of the graph. Place the cursor
on one corner of the area, hold the left mouse button down, and draw a
rectangle around the area of interest.

Constellation Diagram

The Graph Window 6-19

6.2 Constellation Diagram

The graph menu contains many options that allow you to be flexible in how
you display your data. You can use a constellation graph to measure how
effectively the information is extracted from the input signal. The input signal
is separated into two components and the resulting data is plotted using the
Cartesian coordinate system in time, by plotting one signal versus the other
(Y source versus X source, where Y is plotted on the Y axis and X on the X
axis).

Use the View->Graph->Constellation command to view the Graph Property
Dialog box. Field names appear in the left column. You can adjust the values
as needed in the right column, then click OK. The graph window appears with
the properties you have set. You can change any of these parameters from
the graph window by right-clicking the mouse, selecting Properties, and
adjusting the parameters as needed. You can also update the graph at any
point in your program. (See Section 4.4.2, Connecting Probe Points for more
details).

All input fields are C expression input fields. An expression containing a
symbol name can be used for all fields requiring numerical inputs, such as the
start address and acquisition buffer size. For more information, see Section
2.3.4.1, Using Symbols within Expressions.

6.2.1 How the Constellation Diagram Works

There are two buffers associated with the graph window: the acquisition
buffer and the display buffer. The acquisition buffer resides on the actual/
simulated target board. It contains the data that you are interested in. When
a graph is updated, the acquisition buffer is read from the actual/simulated
target board and updates the display buffer. The display buffer resides in the
host memory so it keeps a history of the data. The graph is generated from
the data in the display buffer.

When you have entered all your option choices and press OK, the graph
window receives an acquisition buffer of DSP data of length you entered in
the Acquisition Buffer Size field, starting at DSP location Start Address in the
data memory space. A display buffer of size Constellation Points is allocated
within the host memory, with no data to display initially.

Constellation Diagram

6-20

When the graph is updated, the entire display buffer is left shifted by the value
in the Acquisition Buffer Size field, with the values of the DSP acquisition
buffer shifted in from the right end. This is useful when you are processing a
signal in serial fashion. Although the samples are only available one at a time,
this lets you view a history of the samples. When the associated Probe Point
is reached (see Section 4.4, Probe Points) a block of DSP data is read and
the display is updated.

The following sections describe input fields in the Graph Property Dialog box.

6.2.2 Display Type

The Display Type option in the Graph Property Dialog box contains several
options in the drop-down menu in the right column. The Constellation option
appears by default when you use the command View->Graph->Constellation.
Other options for this field are associated with time/frequency (see Section
6.1, Time/Frequency), eye (see Section 6.3, Eye Diagram), or image graphs
(see Section 6.4, Image).

6.2.3 Graph Title

You can identify each graph that you create with a unique title. This helps to
differentiate results when there are many windows open.

6.2.4 Interleaved Data Sources

Specifies whether the signal sources are interleaved or not. Toggling this
display option allows a single buffer input to represent two sources. Setting
this option to Yes implies a 2-source input buffer, where the odd samples
represent the first source (X source) and even samples represent the second
(Y source). Setting this option to Yes creates the following additional field in
the Graph Property Dialog box:

❏ Start Address. Starting location (on the actual/simulated target board) of
the acquisition buffer containing the data to be graphed. When the graph
is updated, the acquisition buffer, starting at this location, is fetched from
the actual/simulated target board. This acquisition buffer then updates
the display buffer, which is graphed. You can enter any valid C expression
in the Start Address field. This expression is recalculated every time
samples are read from the actual/simulated target. This means that if you
enter a symbol in this field and the symbol later changes value, you do
not have to reenter this parameter.

Constellation Diagram

The Graph Window 6-21

Setting Interleaved Data Sources to No creates the following additional fields:

■ Start Address - X Source

■ Start Address - Y Source

■ Index Increment. Specifies the sample index increment for the data
graph. A specification in this field is equivalent to a sample offset for
noninterleaved sources. This permits you to extract signal data from
multiple sources using a single graph. An index increment of 2, for
instance, corresponds to a sample offset value of 2, which in turn
graphically displays every other sample in the acquisition buffer. You
can, therefore, specify multiple data sources for display by entering
the corresponding offset value in this field. This option provides a
general specification for interleaved sources.

6.2.5 Data Page

If your actual/simulated target consists of multiple pages, such as program,
data and I/O, you can specify pages using the Data Page options. From the
list, select either Prog, Data, or I/O. This indicates whether the page of
variable/memory location graphically displayed is the program, data or I/O
page.

Note: Simulator - I/O Memory Page Not Supported

The simulator for 'C2xx/'C5x/'C54x DSPs does not support the I/O memory
page.

6.2.6 Acquisition Buffer Size

This is the size of the acquisition buffer you are using on your actual/
simulated target board. For example, if you are processing samples one at a
time, enter a 1 in this field. Make sure that you connect your display to the
correct location in your DSP program. (See Section 4.4.2, Connecting Probe
Points for more details.)

When a graph is updated, the acquisition buffer is read from the actual/
simulated target board and updates the display buffer. The display buffer is
graphed.

You can enter any valid C expression for the Acquisition Buffer Size field. This
expression is recalculated every time samples are read from the actual/
simulated target. Therefore, if you enter a symbol in this field and the symbol
later changes values, you do not have to reenter this parameter.

Constellation Diagram

6-22

6.2.7 Index Increment

This field allows you to specify the sample index increment for the data graph.
A specification in this field is equivalent to a sample offset for noninterleaved
sources. This permits you to extract signal data from multiple sources using
a single graph. An index increment of 2, for instance, corresponds to a sample
offset value of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data sources for display
by entering the corresponding offset value in this field.

This option provides a general specification for interleaved sources. If you
enable the Interleaved Data Sources option (see Section 6.1.2, Display
Type), the Index Increment option is disabled.

6.2.8 Constellation Points

This is the size of the display buffer that is graphed on your screen. The
display buffer resides on the host, so a history of your signal can be displayed
even though it no longer exists on the actual/simulated target board.

Constellation points are the maximum number of samples that the graph
displays. Usually the Constellation Points field is greater than or equal to the
Acquisition Buffer Size field. If Constellation Points is greater than the
Acquisition Buffer Size, the acquisition buffer data is left shifted into the
display buffer.

You can enter any valid C expression for the Constellation Points field. This
expression is calculated when you click the OK button in the Graph Property
Dialog box.

6.2.9 DSP Data Type

This field allows you to select among the following data types:

❏ 32-bit signed integer
❏ 32-big unsigned integer
❏ 32-bit floating point
❏ 32-bit IEEE floating point
❏ 16-bit signed integer
❏ 16-bit unsigned integer
❏ 8-bit signed integer
❏ 8-big unsigned integer

You can use signed integer in combination with the Q-Value to interpret
fixed-point values.

Constellation Diagram

The Graph Window 6-23

6.2.10 Q-Value

This field contains a nonzero Q-Value, which are fractional representations of
integer values.The data on the actual/simulated target is interpreted using the
Q-Value. They are formed by inserting a decimal space in the binary
representation of an integer, resulting in greater precision. The Q-Value
indicates amount of the displacement, according to the formula:

New_integer_value = 2Q-Value

A Q-Value of xx indicates a signed 2s complement integer whose decimal
point is displaced xx places from the least significant bit (LSB).

6.2.11 Minimum X-Value

This value sets the minimum value of the X axis displayed on the graph.

6.2.12 Maximum X-Value

This value sets the maximum value of the X axis displayed on the graph.

6.2.13 Minimum Y-Value

This value sets the minimum value of the Y-axis displayed on the graph.

6.2.14 Maximum Y-Value

This value sets the maximum value of the Y-axis displayed on the graph.

6.2.15 Symbol Size

This property provides a way to set the display size of each symbol. Each
constellation is displayed as an X symbol. The following options are
associated with this display property:

❏ Dot: Displays each point as a dot instead of an X symbol
❏ Small
❏ Medium
❏ Large
❏ Extra Large

6.2.16 Axes Display

This option turns the X and Y axes in the graph window on and off. Selecting
On enables the axes and Off disables them.

Constellation Diagram

6-24

6.2.17 Status Bar Display

This option turns the status bar display at the bottom of the graph window on
and off. Selecting On enables the display and Off disables it.

6.2.18 Grid Style

This field sets the pattern of horizontal and vertical background lines in the
graph. You may choose among the following options:

❏ No Grid
❏ Zero Line: Displays only the 0 axes
❏ Full Grid: Displays the full grid

6.2.19 Cursor Mode

This field sets the cursor's appearance and function in the graph. You may
choose among the following options:

❏ No Cursor

❏ Data Cursor: Appears on the graph screen with the cursor coordinates in
the graph status bar.

❏ Zoom Cursor: Allows you to enlarge areas of the graph. Place the cursor
on one corner of the area, hold the left mouse button down, and draw a
rectangle around the area of interest.

Eye Diagram

The Graph Window 6-25

6.3 Eye Diagram

You can use an eye diagram to qualitatively examine signal fidelity. Incoming
signals are continuously superimposed upon each other within a specified
display range and are displayed in an eye shape. The signal’s period is shown
over time by plotting the signal serially and wrapping it back when 0-crossings
are detected. These are reference points at which a signal (specified by the
data source) can wrap back to the beginning of the window frame. A wrap
occurs if either:

❏ A 0-crossing is encountered and the minimum interval between triggers
condition is met

❏ The display length is reached

The 0-crossing level is established by the value in the Trigger Level field. A
0-crossing is determined by comparing this with the value of each sample and
noting the signal trend. If it goes above the 0-crossing level, the next sample
that is equal to or below that level becomes the new 0-crossing point. After
this, the trend of the signal is assumed to be below the 0-crossing level.
Similarly, if the trend is below the level, the next sample that is equal to or
above the level becomes a new 0-crossing point. Beyond this, the signal trend
is assumed to be above the 0-crossing level. The trend is initially determined
from the value of the first signal sample.

When a 0-crossing is detected, it serves as a trigger point (see Section 6.3.4,
Trigger Source) to wrap the data source signal around, provided the value in
the Minimum Interval Between Triggers field is met.

If no 0-crossing is detected, the data source signal is wrapped, according to
the value in the Display Length field (maximum wrap around length). It is also
the middle point of the Y-axis range. The Y axis is symmetrical about the value
in this field. A combination of the Trigger Level and the Maximum Y-Value
yields a minimum value for the Y axis.

Use the View->Graph->Eye command to view the Graph Property Dialog box.
Field names appear in the left column. You can adjust the values as needed
in the right column, then click OK. The graph window appears with the
properties you have set. You can change any of these parameters from the
graph window by right-clicking the mouse, selecting Properties, and adjusting
the parameters as needed. You can also update the graph at any point in your
program. (See Section 4.4.2, Connecting Probe Points for more details).

All input fields are C expression input fields. An expression containing a
symbol name can be used for all fields requiring numerical inputs, such as the
start address and acquisition buffer size. For more information, see Section
2.3.4.1, Using Symbols within Expressions.

Eye Diagram

6-26

6.3.1 How the Eye Diagram Works

There are two buffers associated with the graph window: the acquisition
buffer and the display buffer. The acquisition buffer resides on the actual/
simulated target board. It contains the data that you are interested in. When
a graph is updated, the acquisition buffer is read from the actual/simulated
target board and updates the display buffer. The display buffer resides in the
host memory so it keeps a history of the data. The graph is generated from
the data in the display buffer.

When you have entered all your option choices and press OK, the graph
window is updated. It receives the acquisition buffer of DSP data of the length
in the Acquisition Buffer Size field. This starts at the location in the Start
Address field in the DSP data memory space. A display buffer equal to the
value in the Persistence Size field is allocated within the host memory with all
its values initialized to 0.

When the graph is updated, the entire display buffer is left shifted by the value
in the Acquisition Buffer Size field. The values of Acquisition Buffer are shifted
in from the right end. This is useful when you are processing a signal in serial
fashion. Although the samples are only available one at a time, this lets you
view a history of the samples. When the associated Probe Point is reached
(see Section 4.4, Probe Points), a block of DSP data is read and the display
is updated.

The following sections describe input fields in the Graph Property Dialog box.

6.3.2 Display Type

The Display Type option in the Graph Property Dialog box contains several
options in the drop-down menu in the right column. The Eye Diagram option
appears by default when you use the command View->Graph->Eye Diagram.
Other options for this field are associated with time/frequency (see Section
6.1, Time/Frequency), constellation (see Section 6.2, Constellation Diagram),
or image graphs (see Section 6.4, Image).

6.3.3 Graph Title

You can identify each graph that you create with a unique title. This helps to
differentiate results when there are many windows open.

Eye Diagram

The Graph Window 6-27

6.3.4 Trigger Source

A trigger source is an ideal representation of a signal against which the actual
data source signal values are measured. If you select Yes to enable this
option, whenever the trigger source crosses the 0 line, the data source signal
wraps to the beginning of the window frame. This causes the eye shape in the
signal representation. When you enable the Trigger Source field, the following
additional options appear in the Graph Property Dialog box:

❏ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. Toggling this display option allows a single buffer input
to represent two sources. Setting this option to Yes implies a 2-source
input buffer, where the odd samples represent the data source and even
samples represent the trigger source. Setting this option to Yes creates
the following additional field in the Graph Property Dialog box:

■ Start Address. Starting location (on the actual/simulated target
board) of the acquisition buffer containing the data to be graphed.
When the graph is updated, the acquisition buffer, starting at this
location, is fetched from the actual/simulated target board. This
acquisition buffer then updates the display buffer, which is graphed.
You can enter any valid C expression in the Start Address field. This
expression is recalculated every time samples are read from the
actual/simulated target. This means that if you enter a symbol in this
field and the symbol later changes value, you do not have to reenter
this parameter.

Setting Interleaved Data Sources to No creates the following additional
fields:

■ Start Address - Data Source

■ Start Address - Trigger Source

■ Index Increment. Specifies the sample index increment for the data
graph. A specification in this field is equivalent to a sample offset for
noninterleaved sources. This permits you to extract signal data from
multiple sources using a single graph. An index increment of 2, for
instance, corresponds to a sample offset value of 2, which in turn
graphically displays every other sample in the acquisition buffer. You
can, therefore, specify multiple data sources for display by entering
the corresponding offset value in this field. This option provides a
general specification for interleaved sources.

If you select No for Trigger Source, whenever the data source crosses the 0
line, it triggers the signal to wrap to the beginning of the window frame. This
causes the eye shape in the signal representation.

Eye Diagram

6-28

6.3.5 Data Page

If your actual/simulated target consists of multiple pages, such as program,
data and I/O, you can specify pages using the Data Page options. From the
list, select either Prog, Data, or I/O. This indicates whether the page of
variable/memory location graphically displayed is the program, data or I/O
page.

Note: Simulator - I/O Memory Page Not Supported

The simulator for 'C2xx/'C5x/'C54x DSPs does not support the I/O memory
page.

6.3.6 Acquisition Buffer Size

This is the size of the acquisition buffer you are using on your actual/
simulated target board. For example, if you are processing samples one at a
time, enter a 1 in this field. Make sure you connect the display to the correct
location in your DSP program. (See Section 4.4.2, Connecting Probe Points
for more details.)

When a graph is updated, the acquisition buffer is read from the actual/
simulated target board and updates the display buffer. The data in the display
buffer is left shifted by the amount in the Acquisition Buffer Size field. The data
in the acquisition buffer is shifted into the display buffer from the right end. The
display buffer is graphed.

You can enter any valid C expression for the Acquisition Buffer Size field. This
expression is recalculated every time samples are read from the actual/
simulated target. Therefore, if you enter a symbol in this field and the symbol
later changes values, you do not have to reenter this parameter.

6.3.7 Index Increment

This field allows you to specify the sample index increment for the data graph.
A specification in this field is equivalent to a sample offset for noninterleaved
sources. This permits you to extract signal data from multiple sources using
a single graph. An index increment of 2, for instance, corresponds to a sample
offset value of 2, which in turn graphically displays every other sample in the
acquisition buffer. You can, therefore, specify multiple data sources for display
by entering the corresponding offset value in this field.

This option provides a general specification for interleaved sources. If you
enable the Interleaved Data Sources option (see Section 6.1.2, Display
Type), the Index Increment option is disabled.

Eye Diagram

The Graph Window 6-29

6.3.8 Persistence Size

This is the size of the display buffer that you use. The contents of the display
buffer are graphed on your screen. The display buffer resides on the host, so
a history of your signal can be displayed even though it no longer exists on
the actual/simulated target board.

The Persistence Size field contains the number of samples in history that the
graph displays. Usually the persistence size is greater than or equal to the
value in the Acquisition Buffer Size field. If the Persistence Size field is greater
than the Acquisition Buffer Size field, the acquisition buffer data is left shifted
into the display buffer.

Graph displays are cumulative and, as a result, the graph window may display
more samples than the specified persistence size. You can flush out older
data from the display buffer with incoming samples that are in excess of the
specified Persistence Size by right-clicking the mouse on the graph window
and selecting Refresh. This sets the persistence size to the display buffer
length.

You can use any valid C expression for the Persistence Size field. This
expression is calculated when you click the OK button in the Graph Property
Dialog box.

6.3.9 Display Length

This field sets the time frame displayed in the window. It also sets the
maximum wrap-around length between two trigger points. When no
0-crossing is detected and the interval between the current sample and the
last trigger point is greater than the value in the Display Length field, the
signal in the data source is wrapped to the left trigger point on the screen.

6.3.10 Minimum Interval Between Triggers

This field sets the minimum sample interval between two consecutive trigger
points. If a 0-crossing is detected and the interval between this point and the
last trigger point is the same as or more than the minimum interval, the signal
in the data source is wrapped to the beginning of the window frame.

Eye Diagram

6-30

However, if a 0-crossing is detected and the interval between this point and
the last trigger point is less than the minimum interval, the signal is not
wrapped. The signal is plotted until either of the following conditions is met:

❏ The value in the Display Length field (maximum wrap around length) is
reached. The signal is wrapped to the left trigger point on the screen.

❏ 0-crossing and the minimum interval conditions are met. The signal is
wrapped according to the 0-crossing point.

6.3.11 Pre-Trigger (in samples)

This option sets the number of samples that are displayed before the left
trigger point. It pans the left trigger point toward the left or right hand side of
the screen. This option is useful to visualize the signal around the trigger
point.

Setting this option to 0 places the left trigger point on the left boundary of the
graph window. Setting this option to a positive value moves the left trigger
point toward the right boundary of the window. Setting this option to a
negative value moves the left trigger point to the left side of the left boundary
window, which is outside the window. With the wrap around effect, the point
is moved away from the right boundary of the window.

6.3.12 DSP Data Type

This field allows you to select among the following data types:

❏ 32-bit signed integer
❏ 32-big unsigned integer
❏ 32-bit floating point
❏ 32-bit IEEE floating point
❏ 16-bit signed integer
❏ 16-bit unsigned integer
❏ 8-bit signed integer
❏ 8-bit unsigned integer

You can use signed integer in combination with the Q-Value to interpret
fixed-point values.

Eye Diagram

The Graph Window 6-31

6.3.13 Q-Value

This field contains a nonzero Q-Value, which are fractional representations of
integer values.The data on the actual/simulated target is interpreted using the
Q-Value. They are formed by inserting a decimal space in the binary
representation of an integer, resulting in greater precision. The Q-Value
indicates amount of the displacement, according to the formula:

New_integer_value = 2Q-Value

A Q-Value of xx indicates a signed 2s complement integer whose decimal
point is displaced xx places from the least significant bit (LSB).

6.3.14 Sampling Rate

This field contains the sampling frequency for acquisition buffer samples,
such as for analog to digital conversion. The values for the axis are from 0 to
(Display Length * 1/Sampling Rate). The Pre-Trigger (in samples) parameter
is subtracted from these values to give the labeled axis values.

6.3.15 Trigger Level

This field sets the 0-crossing level if the Trigger Source field is enabled.

6.3.16 Maximum Y-Value

This value sets the maximum value of the Y-axis displayed on the graph. The
values in the Maximum Y-Value and the Trigger Level fields determine the
minimum value of the Y axis.

6.3.17 Axes Display

This option turns the X and Y axes in the graph window on and off. Selecting
On enables the axes and Off disables them.

Eye Diagram

6-32

6.3.18 Time Display Unit

This field specifies the unit of measure for the time axis of the graph. This
option and the value in the Sampling Rate field determine the values on the
axis.

You may select among the following values:

❏ s: second
❏ ms: millisecond
❏ us: microsecond
❏ sample: displays values in terms of the display buffer index

6.3.19 Status Bar Display

This option turns the status bar display at the bottom of the graph window on
and off. Selecting On enables the display and Off disables it.

6.3.20 Grid Style

This field sets the pattern of horizontal and vertical background lines in the
graph. You may choose among the following options:

❏ No Grid
❏ Zero Line: Displays only the 0 axes
❏ Full Grid: Displays the full grid

6.3.21 Cursor Mode

This field sets the cursor's appearance and function in the graph. You may
choose among the following options:

❏ No Cursor

❏ Data Cursor: Appears on the graph screen with the cursor coordinates in
the graph status bar.

❏ Zoom Cursor: Allows you to enlarge areas of the graph. Place the cursor
on one corner of the area, hold the left mouse button down, and draw a
rectangle around the area of interest.

Image

The Graph Window 6-33

6.4 Image

The graph menu contains many options that allow you to be flexible in how
you display your data. You can use an image graph to test image-processing
algorithms. Image data is displayed based on RGB and YUV data streams.
Use the View->Graph->Image command to view the Graph Property Dialog
box. Field names appear in the left column. You can adjust the values as
needed in the right column, then click OK. The graph window appears with
the properties you have set. You can change any of these parameters from
the graph window by right-clicking the mouse, selecting Properties, and
adjusting the parameters as needed. You can also update the graph at any
point in your program. (See Section 4.4.2, Connecting Probe Points for more
details.)

All input fields are C expression input fields. An expression containing a
symbol name can be used for all fields requiring numerical inputs, such as the
start address and acquisition buffer size. For more information, see Section
2.3.4.1, Using Symbols within Expressions.

6.4.1 How the Image Graph Works

There are two buffers associated with the graph window: the acquisition
buffer and the display buffer. The acquisition buffer resides on the actual/
simulated target board. It contains the data that you are interested in. When
a graph is updated, the acquisition buffer is read from the actual/simulated
target board and updates the display buffer. The display buffer resides in the
host memory so it keeps a history of the data. The graph is generated from
the data in the display buffer.

When you have entered all your option choices and press OK, the graph
window is updated. It receives an acquisition buffer of DSP data that starts at
the data memory location you enter in the Start Address field. A display buffer
is allocated within the host memory with no data to display initially. Both the
acquisition buffer and the display buffer maintain the entire image.

When the graph is updated, the acquisition buffer containing the entire image
is fetched from the actual/simulated target board and the display buffer is
overwritten by the acquisition buffer. When the associated Probe Point is
reached (see Section 4.4, Probe Points) a block of DSP data is read and the
display is updated.

The following sections describe input fields in the Graph Property Dialog box.

Image

6-34

6.4.2 Graph Title

You can identify each graph that you create with a unique title. This helps to
differentiate results when there are many windows open.

6.4.3 Color Space Operations

This field specifies the way data is interpreted and displayed. You can choose
between the following color space options:

❏ YUV. Every Y, U, and V sample is represented using 8 bits. If you select
YUV, the following additional fields are displayed in the Graph Property
Dialog box:

■ YUV Ratio . Specifies the relationship among Y, U, and V samples.
You may choose among the following options:

4:1:1 - For every four horizontal Y samples, there is one U and V sample.
There is no reduction of U and V in the vertical direction.

4:2:2 - For every two horizontal Y samples, there is one U and V sample.
There is no vertical reduction of U and V in the vertical direction.

4:2:0 - There is a 2:1 reduction of U and V in both the vertical and
horizontal. This means that for every 2x2 Y samples, there is one U and
V sample.

■ Transformation of YUV Values . Converts YUV to RGB. To
transform YUV, there are two steps: YUV to Y'U'V' and Y'U'V' to RGB.
You may choose between the following options:

Unity (none): Uses the unity matrix to transform YUV to Y'U'V'.

ITU-R BT 601 (CCIR601): Follows recommendation ITU-R BT.601
(formerly CCIR 601) luma to convert YUV into RGB using the
CCIR601 matrix to transform YUV to Y'U'V'.

■ Start Address - Y Source

■ Start Address - U Source

■ Start Address - V Source

Image

The Graph Window 6-35

❏ RGB. Specifies the relationship among R, G, and B samples. Selecting
RGB causes the following additional field to be displayed in the Graph
Property Dialog box:

■ Interleaved Data Sources. Specifies whether the signal sources are
interleaved or not. If this option is set to Yes, the following additional
fields appear in the Graph Property Dialog box:

❚ Start Address. This represents a single buffer input with triple
interleaved sources. This implies a 3-source input buffer where
the interleaving length is 1. For example, the sequence
"R0G0B0R1G1B1 ..." represents a stream of RGB components for
pixel 0, followed by the components for pixel 1.

❚ Bits Per Pixel. You may select among the following options:

8 (256 Color Palette): Each pixel is an 8-bit value, indexed to a palette

16 (6 Bits for Green): Each pixel is a 2-byte value with 5 bits for red,
6 bits for green, and 5 bits for blue

24: Each pixel is a 3-byte value with 8 bits for red, green, and blue
respectively

32: Each pixel is a 4-byte value with the highest byte not used, and 8
bits for red, green, and blue

If you choose either 16 (6 Bits for Green), 24, or 32 for Bits Per Pixel,
an additional property is displayed:

❚ Image RGB Order. Specifies the order of red, green, and blue
colors. You may choose among the following options: RGB, BGR,
RBG, BRG, GBR, and GRB.

If you choose 8 (256 Color Palette) in Bits Per Pixel, an additional
property is displayed:

❚ Palette Option. Specifies the conversion of an 8-bit pixel value
(palette index) into RGB color values. You may choose among
the following options: Uniform Palette of 256 Colors, Gray Scale
of 256 Colors, and User Defined (256 Colors).

If you select User Defined (256 Colors) in Palette Option, the
following additional property items are displayed:

❚ Palette Address. Specifies the starting address from which to
fetch the user-provided palette. The address can be any valid C
expression and is recalculated every time samples are read from
the actual/simulated target.

Image

6-36

❚ Palette Entry 4-Byte Aligned. If you select Yes, each palette
entry is a 4-byte value with the lowest byte not used, and uses
eight bits for red, green, and blue, respectively. If you select No,
each palette entry is a 3-byte value with 8 bits for red, green, and
blue, respectively.

❚ Palette Entry RGB Order. Specifies the order of red, green, and
blue colors. You may choose among the following options: RGB,
BGR, RBG, BRG, GBR, and GRB.

❚ Read Palette Once Only. If you select No, the palette is fetched
every time the graph is updated. If you select Yes, the palette is
fetched from the actual/simulated target board only once, even
though the graph is updated many times. Changing graph
properties forces a reload of the palette.

If you select No for the Interleaved Data Sources field, each R, G and B
component of each pixel is 8 bits wide and has values ranging from 0 to
255. The following additional fields are created in the Graph Property
Dialog box:

■ Start Address - R Source

■ Start Address - G Source

■ Start Address - B Source

6.4.4 Data Page

If your actual/simulated target consists of multiple pages, such as program,
data and I/O, you can specify pages using the Data Page options. From the
list, select either Prog, Data, or I/O. This indicates whether the page of
variable/memory location graphically displayed is the program, data or I/O
page.

Note: Simulator - I/O Memory Page Not Supported

The simulator for 'C2xx/'C5x/'C54x DSPs does not support the I/O memory
page.

Image

The Graph Window 6-37

6.4.5 Lines Per Display

This option specifies the height of the entire image in pixels. This value and
the value in the Pixels Per Line field determine the image size. When the
graph is updated, the entire image is fetched from the actual/simulated target
board and displayed.

6.4.6 Pixels Per Line

This option specifies the width of the entire image in pixels. This value and
the value in the Lines Per Display field determine the entire image size. When
the graph is updated, the entire image is fetched from the actual/simulated
target board and displayed.

6.4.7 Byte Packing to Fill 32 Bits

This option specifies the packing format of data on the actual/simulated target
board.

If you select No, the data stream of type byte is not packed and each data
value on the actual/simulated target is of type byte.

If you select Yes, the data stream of type byte is packed so that every four
bytes is grouped as a packet. The packet is a data value on the actual/
simulated target of type 32-bit unsigned integer. The lowest byte of the data
value is the first byte in the packet. Selecting the Yes option for this field
causes an additional field to appear in the Graph Property Dialog box:

❏ Image Row 4-Byte Aligned. If you select Yes for this option, each image
row on the actual/simulated target board is 4-byte aligned. If you select
No, each image row on the actual/simulated target board is not 4-byte
aligned. A data value may contain samples of the data for the end of one
row and the head of next row.

6.4.8 Image Origin

This field specifies the origin of the image on the graph window. You may
select among the following options: Bottom Left, Top Left, Top Right, and
Bottom Right.

Image

6-38

6.4.9 Uniform Quantization to 256 Colors

This option is available only when the original image is not a 256-color image.
If you select Yes, the image is uniformly quantized to a 256-color image. A
quantized image has 8 levels for red and green, and 4 levels for blue. The
original red, green, and blue values are mapped to one of these levels.
Selecting Yes causes an additional field to appear in the Graph Property
Dialog box:

❏ Error Diffusion. If you select Yes, this option diffuses the error
introduced by quantization to give a smoother color. If you select No, the
quantization error is not adjusted.

If you select No for Uniform Quantization to 256 Colors, the image is not
quantized and displayed in RGB color space. Note that if the display
hardware cannot display more than 256 colors, this option is forced to Yes.

6.4.10 Status Bar Display

This option turns the status bar display at the bottom of the graph window on
and off. Selecting On enables the display and Off disables it.

6.4.11 Cursor Mode

This field sets the cursor's appearance and function in the graph. You may
choose among the following options:

❏ No Cursor

❏ Data Cursor: Appears on the graph screen with the cursor coordinates in
the graph status bar.

❏ Zoom Cursor: Allows you to enlarge areas of the graph. Place the cursor
on one corner of the area, hold the left mouse button down, and draw a
rectangle around the area of interest.

7-1

Chapter 7

The Memory Map

The memory map tells the Code Composer debugger which areas of memory
it can and cannot access. Typically, the map matches the memory definition
in your linker command file. For information about the memory directive and
setting up a linker command file, see the Code Generation Tools online help.

7.1 Accessing Memory Maps . 7–2

7.2 Defining the Memory Map. 7–3

7.3 Using GEL to Define Your Memory Map . 7–5

Topic Page

Accessing Memory Maps

7-2

7.1 Accessing Memory Maps

When you enable memory mapping, the Code Composer debugger checks
each of its memory accesses against the memory map provided. If you try to
access an undefined or protected area, the debugger displays the default
value instead of trying to access the target.

Note: Simulator - Memory Map Settings

The simulator uses hard-coded memory map settings to provide a generic
representation of the DSP family simulated by the software. For information
on simulator memory map settings, see the online help topic Simulator –
Memory Map Specifications. You can manipulate the memory map settings
using the methods in this chapter. However, to avoid anomalous behavior,
try to keep your program size within the specified memory map ranges.

Accessing Nonexistent Memory

When the Code Composer debugger compares memory accesses against
the memory map, it performs this checking in software, not hardware. The
debugger cannot prevent your program from attempting to access
nonexistent memory.

You can define a valid memory map range for your target as follows:

❏ You can enter the commands interactively while using the debugger.

❏ You can use the GEL built-in functions to define your memory map. The
debugger provides a complete set of memory-mapping commands that
you can invoke via the General Extension Language (GEL) and the menu
bar. The easiest method of implementing the memory map is to put the
memory-mapping commands in a GEL text file and execute it upon start
up.

Defining the Memory Map

The Memory Map 7-3

7.2 Defining the Memory Map

You can use the Memory Map dialog box to define and list your memory map
interactively. Invoke the dialog box with the Option->Memory Map command
on the Code Composer menu bar.

When you first invoke Code Composer, the memory map is turned off. You
can access any memory location; the memory map does not interfere.

To Add a New Memory Map Range

Use the following steps to define a memory range you wish to access:

1) Select the Option->Memory Map command from the menu bar. This
brings up the Memory Map dialog box.

2) Make sure that the Enable Memory Mapping checkbox is checked.
Otherwise, all addressable memory (RAM) on your target is assumed to
be valid by the Code Composer debugger.

3) Select the folder that corresponds to the page you wish to modify
(Program, Data, or IO). Skip this step if you are using a processor that
has only one memory page such as the 'C3x and 'C4x. When the
processor has only one memory page, only one folder is created.

4) Enter the start address of the new memory map range in the Starting
Address input field.

5) Enter the length of the new range in the Length input field.

6) Select the read/write characteristics of the new memory range in the
Attributes field.

7) Click the Add button with the mouse.

The debugger allows you to enter a new memory range that overlaps existing
ones. The new range is assumed to be valid, and the overlapped range's
attributes are changed accordingly.

When you have defined a memory map range, you may wish to modify its
read/write attributes. You can do this by defining a new memory map (with the
same start address and length) and clicking the Add button. The debugger
overwrites the existing attributes with the new ones.

Defining the Memory Map

7-4

To Delete an Existing Memory Map Range

You can also delete an existing memory map range. You can change the
Attributes field to None - No Memory/Protected. This means you can neither
read nor write to this memory location. You can also delete a memory map
range as follows:

1) Select the Option->Memory Map command from the menu bar. This
brings up the Memory Map dialog box.

2) In the Memory Map List box, select the memory map range you wish to
delete.

3) Click the Delete button.

When you attempt to read from a memory location that is protected by the
memory map, the Code Composer debugger substitutes a protected value
instead of attempting to read from the target. The default value at start up is
0; therefore, all invalid memory locations display the value 0. You can change
the default value by entering in your own value in the Protected Value input
field of the Memory Map dialog box. You can substitute values like 0XDEAD
to clearly indicate that a read attempt to invalid memory location has been
made.

Using GEL to Define Your Memory Map

The Memory Map 7-5

7.3 Using GEL to Define Your Memory Map

When you first invoke Code Composer, the memory map is turned off. You
can access any memory location; the memory map does not interfere. If you
invoke Code Composer with an optional GEL file name specified as a
parameter, Code Composer automatically loads this GEL file. If you also have
a GEL function named as StartUp(), it is executed. You can specify your map
functions in this file to automatically specify your memory mapping
requirements for your environment.

You can use the following GEL functions to define your memory map:

GEL_MapAdd() Memory map add

GEL_MapDelete() Memory map delete

GEL_MapOn() Enable memory map

GEL_MapOff() Disable memory map

GEL_MapReset() Reset memory map

The GEL_MapAdd() function defines a valid memory range and identifies the
read/write characteristics of the memory range. The following is a sample of
a GEL file that can be used to define two blocks of length 0xF000 that are both
readable and writeable:

StartUp()
{
 GEL_MapOn();
 GEL_MapReset();
 GEL_MapAdd(0, 0, 0xF000, 1, 1);
 GEL_MapAdd(0, 1, 0xF000, 1, 1);
}

When you have set up your memory map, you can use the Option->Memory
Map command to view it.

For more information on implementing these built-in GEL memory
manipulation functions, please refer to Chapter 12, The General Extension
Language (GEL).

7-6

8-1

Chapter 8

Using the Watch Window

The Watch window allows you to examine and edit variables and C
expressions. In the Watch window, you can expand and collapse complex
expressions. You can also evaluate terms and display results in different
formats. The QuickWatch feature allows you to quickly add variables to the
Watch window. This chapter shows how these features operate for
debugging.

8.1 Adding and Deleting Expressions in the Watch Window 8–2

8.2 Editing Variables in the Watch Window . 8–4

8.3 Watch Window Display Formats . 8–5

8.4 QuickWatch . 8–6

Topic Page

Adding and Deleting Expressions in the Watch Window

8-2

8.1 Adding and Deleting Expressions in the Watch Window

To add an expression in the Watch window, follow the steps below:

1) Select the View->Watch Window command from the menu bar or the
toolbar or select the Watch Window shortcut button from the Debug
toolbar:

Watch Window Button:

2) To add a new expression to the Watch window, use any of the following
methods:

■ Select one of the four Watch window tabs for Windows 95/NT or the
single Watch window for UNIX systems. Press the Insert key on the
keyboard. This brings up the Watch Add Expression dialog box. Type
the expression you wish to examine in the Expression field and press
OK.

■ In the Watch window, press the right mouse button and select Insert
New Expression. This brings up the Watch Add Expression dialog
box. In the Expression field, type the expression you wish to examine
and press OK.

■ Double-click on the variable in the source or Dis-Assembly window,
press the right mouse button, and select Add to Watch Window.

Using Symbols as Expressions

A symbol name can be specified as an expression in the Watch window.
However, Code Composer interprets symbols differently depending on
whether or not the object file contains symbolic debugging information.

If a symbol is defined in a C source file and symbolic debugging information
(-g) is specified when building the file, the symbol is treated as a variable
representing the contents of memory at the specified address.

Without symbolic debugging information, all symbols are treated as
addresses.

Adding and Deleting Expressions in the Watch Window

Using the Watch Window 8-3

For example, when using a symbol name to specify an expression in the
Watch window:

If symbolic debugging information is available, the value at the memory
location represented by the symbol name (variable) is displayed in the Watch
window.

If symbolic debugging information is not available, the Watch window can only
indicate that a label exists at a certain address. The symbol’s address is
displayed in the Watch window. To display the value at the memory location
represented by the symbol, it is necessary to prepend the symbol name with
and asterisk (*).

To Delete Expressions in the Watch Window

1) Select the expression you wish to remove from the active Watch window
by clicking on it with the mouse or using the up/down arrow keys to move
to the expression.

2) Press the Delete key on the keyboard. If the expression is expanded, all
subexpressions are removed from the Watch window.

For TI fixed-point processors, if your actual/simulated target consists of
multiple pages, you can specify the specific page with the @ symbol. After
you type the symbol, enter one of the terms: prog, data, or io. This specifies
whether the page is a program, data, or I/O page, as shown in the following
example:

*(int *)0x1000@prog
*(int *)0x1000@data

8.1.1 Expanding and Collapsing Watch Variables

Variables that contain more than one element, such as arrays, structures, or
pointers, are displayed with either a + or - sign preceding them. The + symbol
indicates that the variable contains elements and can be expanded. The -
symbol indicates that the variable is fully expanded and can be collapsed.

To Expand or Collapse a Variable

1) Select the variable you wish to expand by using the mouse or by using
the up/down arrow keys.

2) When the variable is current, you can toggle its expansion state by
pressing the Enter key.

Editing Variables in the Watch Window

8-4

8.2 Editing Variables in the Watch Window

You can modify the Watch window expression and its value as follows:

1) Select the tab for the Watch window you wish to use. In the window, select
the variable you wish to edit by clicking on it with the mouse or by using
the up/down arrow keys.

2) Double-click on the variable with the left mouse button to obtain the Edit
Variable dialog box.

3) Edit the information in the Value field as desired.

4) You can also replace the existing watch expression with a new one. For
example, you can modify the existing expression to change its display
format. (See Section 8.3, Watch Window Display Formats.)

Note: Cannot Edit Expanded Expression

You cannot edit the Variable field if the variable is an expanded expression
or if it is an element of an expanded variable. If you want to change the
variable, you must first collapse the variable and then edit it.

Watch Window Display Formats

Using the Watch Window 8-5

8.3 Watch Window Display Formats

You can use formatting symbols to change the display format of the variables
in the Watch window. The default display format depends on the type of
variable displayed. To change the format, enter the variable followed with a
comma and formatting letter as follows:

myVar,x = 0x1234

Symbol Format

d Decimal

e Exponential floating point

f Decimal floating point

x Hexadecimal

o Octal

u Unsigned integer

c ASCII character (bytes)

p Packed ASCII character using big endian format: the first
character is in the most significant byte (MSBbyte) of the
target

P Packed ASCII character using little endian format: the first
character is in the least significant byte (LSByte) of the target

Note: P and p Display String

The p and P formats display a string on the target. The variable must be a
char pointer pointing to the first character of the string on the target.

QuickWatch

8-6

8.4 QuickWatch

You can use the QuickWatch feature of the Code Composer debugger to
quickly view and/or modify variables or add an item to the Watch window. The
QuickWatch dialog box is similar to the Watch window; therefore, many of the
features are very similar. To modify a variable, double-click on it. To expand
or collapse an expression, make sure that it is selected and then press Enter.

To View a Variable Using QuickWatch

1) Place the cursor on the variable that you wish to examine in the Edit
window.

2) Right-click with the mouse and select Quick Watch from the context
menu. The QuickWatch dialog box appears.

You may also use the Quick Watch shortcut button on the Debug toolbar.

QuickWatch Button:

9-1

Chapter 9

The Integrated Editor

This chapter describes the features you may use in Code Composer to edit
your source program.

9.1 Overview of Features . 9–2

9.2 Keyboard Shortcuts . 9–5

9.3 File Manipulation . 9–9

9.4 Finding and Replacing Text . 9–15

9.5 Setting Editor Properties . 9–18

9.6 Using Bookmarks . 9–19

Topic Page

Overview of Features

9-2

9.1 Overview of Features

Code Composer offers the following edit capabilities:

❏ Syntax highlighting. Highlight language keywords, comments, strings,
and assembler directives in different colors.

❏ Find and replace. Search and replace text strings. You can invoke these
capabilities from the standard toolbar.

❏ Context-sensitive help in source file. Search for help on a highlighted
word. This is useful in obtaining help on assembly instructions or GEL
built-in functions.

❏ Multiple windows. Open multiple files or multiple views of the same file.

❏ Split windows. Divide Edit windows within the Code Composer
environment (*.c, *.cmd,*.asm,*.h files). This allows you to create multiple
copies within a single active window. To split a window horizontally, click
on the small bar at the top of the scroll bar and drag down. To split a
window vertically, click on the small bar at the left of scroll bar and drag
to the right. In either case, drag the partition to the size you want for the
window copies.

❏ Edit toolbar. Fast access to advanced editor functions.

❏ Right mouse button access. Easy access to advanced editor functions.
Right-click with your mouse anywhere within an Edit window and select
functions from the context menu.

Overview of Features

The Integrated Editor 9-3

9.1.1 Standard Toolbar

The standard toolbar is automatically displayed when Code Composer is
started. You can toggle it on or off by selecting View->Standard Toolbar from
the menu.

The following are the buttons on the standard toolbar:

New. Create a new file.

Open . Open an existing file.

Save. Save the file in the active window.

Cut . Cut marked text to the clipboard.

Copy. Copy marked text to the clipboard.

Paste . Paste text at the cursor position from the clipboard.

Undo . Undo the last edit action.

Redo. Redo the last undo action.

Find Next . Find the next instance of the search string in the active
window.

Find Previous . Find the previous instance of the search string in the
active window.

Search Word . Uses the word under the cursor as search text or if a
section of text is highlighted, uses the section as search text. Clicking this
button moves the window to the next occurrence of the search text.

Find in Files . Search multiple files for the specified text.

Print . Print the active source file.

Help. Click this button and then click on an object to view
context-sensitive help.

Overview of Features

9-4

9.1.2 Edit Toolbar

The Edit toolbar is automatically displayed when Code Composer is started.
You can toggle it on or off by selecting View->Edit Toolbar from the menu.

During multiprocessing, edit features operate on the active child window in
the currently selected parent window. The parent window's name (one parent
window for each CPU in a multiprocessor system) appears in the Edit
toolbar's title.

The following are the buttons on the Edit toolbar:

Mark To . Marks text inclusively to the matching parenthesis when you
place the cursor before a parenthesis or brace.

Mark Next . Searches for the next opening parenthesis or brace and,
if found, marks the text to the closing parenthesis or brace. You can look
deeper into nested blocks by pressing the button again.

Find Match . Moves the cursor to the matching parenthesis or brace.

Find Next Open . Moves the cursor to the next open parenthesis or
brace.

Outdent Marked Text . Moves the selected block of text one tab stop
to the left.

Indent Marked Text . Moves the selected block of text one tab stop to
the right.

Edit:Toggle Bookmark . Creates or removes a bookmark from the
current line in the active document.

Edit:Next Bookmark . Finds the next bookmark in the active
document.

Edit:Previous Bookmark . Finds the previous bookmark in the active
document.

Edit Bookmarks . Opens the Bookmark Properties dialog box.

You can also access the Edit toolbar by right-clicking the mouse and selecting
Tools->Edit Toolbar.

Keyboard Shortcuts

The Integrated Editor 9-5

9.2 Keyboard Shortcuts

A quick way to access editor features (as well as others) is to use keyboard
shortcuts.

Table 9–1 Default Keyboard Shortcuts

Keyboard Action To Press

Manage bookmark Launch bookmark dialog box Alt + F2

Toggle bookmark Ctrl + F2

Toggle bookmark and edit it Ctrl + Alt + F2

Go to next bookmark in file F2

Edit column Toggle column edit mode Ctrl + Shift + F8

Move insertion point Move one character left Left arrow

Move one character right Right arrow

Move one word left Ctrl + left arrow

Move one word right Ctrl + right arrow

Move one line up Up arrow

Move one line down Down arrow

Move to the first indentation of cur-
rent line

Home

Move to the beginning of current line Home, Home

Move to the end of line End

Move to the beginning of the file Ctrl + Home

Move to the end of file Ctrl + End

Delete, insert, copy Delete one character to the left Backspace

Delete one character to the right Delete

Delete selected text and copy to
Clipboard

Ctrl + X, Shift + Delete

Keyboard Shortcuts

9-6

Turn keyboard insert mode on or off Insert

Copy selected text to clipboard,
keeping it

Ctrl + C, Ctrl + Insert

Copy selected text to clipboard,
deleting it

Ctrl +X, Shift + Delete

Insert contents of clipboard Ctrl + V, Shift + Insert

Undo the last edit Ctrl + Z

Tabs
With multiple lines selected, move
lines one tab stop to the right

Tab

With multiple lines selected, move
lines one tab stop to the left

Shift + Tab

Scroll text Scroll up one page at a time Page Up

Scroll down one page at a time Page Down

Select text Select character to the left Shift + left arrow

Select character to the right Shift + right arrow

Select one word to the left Shift + Ctrl + left arrow

Select one word to the right Shift + Ctrl + right arrow

Select current line if insertion point
is home

Shift + down arrow

Select line above if insertion point is
home

Shift + up arrow

Select to end of the line Shift + End

Select to beginning of line Shift + Home

Select one screen up Shift + Page Up

Select one screen down Shift + Page Down

Window management Switch to next Edit window Ctrl + F6

Switch to previous Edit window Shift + Ctrl + F6

Keyboard Action To Press

Keyboard Shortcuts

The Integrated Editor 9-7

Switch to next window (includes all
windows)

F6

Switch to previous window (includes
all windows)

Shift + F6

Switch to previously active window Ctrl + Tab

Close active window Ctrl + F4

Keyboard Action To Press

Keyboard Shortcuts

9-8

9.2.1 Customizing Keyboard Shortcuts

You can customize keyboard shortcuts not only for editing commands, but for
all menu commands within Code Composer. Select Option->Keyboard from
the menu to open the Customize Keyboard dialog where you can assign
keyboard shortcuts.

From the Commands window, select the command you wish to customize.
You can view its current keyboard shortcut(s) in the Assigned Keys window.

To assign a new key sequence for invoking the selected command, click the
Add button. The Assign Shortcut dialog box appears. In this dialog box, enter
the new key sequence, and then press OK.

To remove a particular key sequence for a command, select the key
sequence in the Assigned Keys window and click the Remove button.

With the Save As option, you can save a keyboard configuration in a file. This
button brings up the Save As dialog box, where you can navigate to the
location where you want to save your configuration.

Use the browse button (...) to navigate to and load a previously saved
configuration file.

You can immediately switch to brief editor shortcut keys by clicking the BRIEF
Keys button.

File Manipulation

The Integrated Editor 9-9

9.3 File Manipulation

The following sections describe operations you can perform on your source
files.

9.3.1 Creating a New File

To create a new source file, use the following steps. Creating a source file
does not affect existing source files.

1) From the menu, select File->New. This opens a new Edit window. You can
also select the toolbar shortcut to create a new file.

New File Shortcut:

2) Type your source code in the new window. Notice that an asterisk (*)
appears next to the file name in the Edit window's title bar indicating that
the source file has been modified. The asterisk disappears when the file
is saved.

3) From the menu, select File->Save or File->Save As. The Save As dialog
box appears. You may also use the shortcut button.

Save File Shortcut:

4) In the main window of the Save As dialog box, double-click the directory
where you want to store the source file. If the directory you want is not
visible, navigate to the correct directory.

5) The file name appears in the File name field. If you want to change the
file extension, type in another extension or select one in the Save as type
field.

6) Click Save.

New files are labeled Untitled until they are saved. Before you can save or
close a window, it must be active. To make a window active, click anywhere
in the window or select Window->Untitled from the menu.

File Manipulation

9-10

9.3.2 Opening a File

The Open command opens an existing source file. You can open any ASCII
file created with any editor.

To Open a File

1) From the menu, select File->Open. The Open dialog box appears. You
may also use the toolbar shortcut.

File Open Shortcut:

2) In the main window of the Open dialog box, double-click the file you want
to open. If the file you want is not visible, navigate to the correct directory
and double-click the file.

3) The file name appears in the File name field. If you want to change the
file extension, type in another extension or select one in the Files of type
field.

4) Click Open.

9.3.3 Duplicating File Views

From the menu, select Window->New Window to get multiple views of the
same file. When more than one copy of a file appears, the title bar displays
filename <n>, where n is a unique window number. Any changes in a window
are reflected in the other windows.

9.3.4 Saving Files

The Save command saves a file using the name in the title bar.

To Save a File

1) Make the file active by clicking the Edit window. Select File->Save or use
the toolbar shortcut.

Save File Shortcut:

2) If your file is unnamed, the Save As dialog box appears. In the File name
box, type the name you wish to use.

3) Navigate to the drive and directory you want to save the file in.

4) If you want to change the file extension, type in another extension or
select one in the Save as type field box.

5) Click Save.

File Manipulation

The Integrated Editor 9-11

To Change the File Name or File Extension

1) Make the file active by clicking the Edit window. Select File->Save As.

2) The Save As dialog box appears. In the File name box, type the name you
wish to use.

3) Navigate to the drive and directory you want to save the file in.

4) If you want to change the file extension, type in another extension or
select one in the Save as type field box.

5) Click Save.

To Save All Open Files

Select File->Save All from the menu.

9.3.5 Printing Files

The Print command enables you to print a source file.

To Print a File

1) Make the file active by clicking the Edit window. Select File->Print or use
the toolbar shortcut to open the Print dialog box.

Print Shortcut:

2) Select the printer you wish to use in the Name drop-down list.

3) Fill in the page range you wish to use in the Print Range area.

4) Click OK.

File Manipulation

9-12

9.3.6 Cutting, Copying, and Pasting Text

Use the Edit->Cut command to remove selected text from the active window
and copy it to the clipboard. Use the Edit->Copy command to copy selected
text from the active window to the clipboard. Use the Edit->Paste command
to insert text from the clipboard.

To Cut, Copy, and Paste Text

1) Highlight the text you want to cut or copy.

2) Select Edit->Cut or Edit->Copy. You can also use the following toolbar
shortcuts:

Cut Shortcut:

Copy Shortcut:

3) Place the insertion point in any Edit window where you want the text.

4) Select Edit->Paste, or you may use the toolbar shortcut:

Paste Shortcut:

9.3.7 Deleting Text

Selecting Edit->Delete from the menu deletes highlighted text without
copying it to the clipboard. You cannot paste this text to another location. You
may also use the Delete key on the keyboard.

9.3.8 Editing Columns

You can select, cut, and paste columns of text instead of entire rows.

Make the file active by clicking the Edit window. Enter into column mode by
selecting Edit->Column Editing or by pressing the keyboard sequence:

Ctrl + Shift + F8

While pressing the Alt key, move the cursor to the column you wish to select
and click and drag to select a column area. You can also select a column by
pressing the shift key as you move the cursor with the arrow keys.

You can cut, copy, paste, and delete the selected columns as desired (see
Section 9.3.6, Cutting, Copying, and Pasting Text).

File Manipulation

The Integrated Editor 9-13

9.3.9 Undo/Redo Actions

Select the Edit->Undo and Edit->Redo commands to reverse the last editing
action in the active window.

To Undo

From the menu, select Edit->Undo. You may also use the keyboard shortcut:
Ctrl + Z or the Undo toolbar button:

Undo Shortcut:

To Redo

From the menu, select Edit->Redo. You may also use the keyboard shortcut:
Ctrl + A or the Redo toolbar button:

Redo Shortcut:

9.3.10 Tabbing Multiple Lines

To change the indent of a group of lines, select the entire section, and press
the Tab key on the keyboard to indent or Shift + Tab to outdent. You may also
use the toolbar shortcuts.

Outdent Marked Text Shortcut:

Indent Marked Text Shortcut:

9.3.11 Go To Source Line

You can quickly go to a specific line or bookmark in a source file using the
Go To command.

To Go To a Specific Line or Bookmark

1) Select the command Edit->Go To from the menu. The Go To dialog box
appears.

OR

Right-click within the Edit window and select Go To from the context
menu.

2) Specify the line or bookmark you want to view.

3) Click OK.

File Manipulation

9-14

9.3.12 Changing Fonts

You can change the text font and size with the Option->Font command.

To Change a Font and Size

1) From the menu, select Option->Font. The Font dialog box appears.

2) Select the font, font style, and size that you wish to use.

3) Press OK.

Finding and Replacing Text

The Integrated Editor 9-15

9.4 Finding and Replacing Text

Code Composer allows you to search the current file or multiple files for a text
string. You may also choose to replace one text string with another text string.

9.4.1 Finding Text in the Current File

Use the Find field in the standard toolbar to quickly search the active window
for a text string.

To Find a Text String

1) Type the search string in the Find field, which is part of the standard
toolbar. The Find field is a scrollable list containing a history of search
strings. You may scroll through the list to find a previous search
parameter.

2) Begin your search by selecting either of the following toolbar buttons,
depending on the direction of the search:

Find Next:

Find Previous:

Alternatively, you can use the Edit->Find/Replace command to search for a
text string.

To Find a Text String Using the Find/Replace Command

1) Position the insertion point where you want to start your search.

2) Select Edit->Find/Replace from the menu. The Find and Replace dialog
box appears.

3) Type the search text in the Find field.

4) Click Find next.

Finding and Replacing Text

9-16

9.4.2 Setting Find/Replace Properties

You can control your search by setting options in the Find/Replace Properties
dialog.

1) From the Find and Replace dialog box, press the Properties button. The
Find/Replace Properties dialog box appears.

2) Select options to specify:

Direction . Specify the direction of the search.

Match case . Search for text that matches the capitalization of the text
string.

Whole word . Match only occurrences of the text string that are not
preceded or followed by an alphanumeric character or an underscore.

3) Click OK.

9.4.3 Finding and Replacing Text

In addition to finding text within a file, you can also use the Find/Replace
command to search for a text string and replace it with another text string.

To Find and Replace Text

1) Position the insertion point where you want to start your search.

2) Select Edit->Find/Replace from the menu. The Find and Replace dialog
box appears.

3) Type the search text in the Find field.

4) Type the text you wish to replace the text with in the Replace field.

5) Press the Find next button.

6) When the text is found, press the Replace button to replace the selected
text.

Alternatively, press the Replace All button to replace all occurrences of
the selected text.

Finding and Replacing Text

The Integrated Editor 9-17

9.4.4 Finding Text in Multiple Files

The Edit->Find in Files command enables you to search multiple text files for
a specific text string or regular expression.

To Find a Text String or Regular Expression

1) From the menu, select Edit->Find in Files to open the Find in Files dialog
box. Alternatively, click the Find in Files toolbar shortcut.

Find in Files:

2) In the Find in Files dialog box, provide the following information:

Find What . Enter a text string or a regular expression. Use the
drop-down list to select from a list of previous search strings.

Files of Type . Select the file type you want to search. Select from a
drop-down list of common file types or enter text specifying a file type.

In Folder . Select the primary folder that you want to search. Enter text
specifying a drive and folder or use the Browse button (...) to select a
folder.

Look in subfolders . Search subfolders of the specified primary folder.

Match case . Search for text that matches the capitalization of the text
string.

Match Whole word only . Match only occurrences of the text string that
are not preceded or followed by an alphanumeric character or an
underscore (_).

Look In Project Files . Search within a particular project.

3) Click Find to begin the search.

An Output window displays the results of the search. For each match, the
Output window displays the fully qualified filename, followed by the line
number and the text of the line containing the match.

Double-clicking a match in the Output window opens the specified file in an
Edit window. The cursor in the Edit window is located at the beginning of the
line containing the match.

To close the Output window, right-click within the window to display the
context menu and select Hide.

To display the output from the last multiple file search during your current
session, select the Output command from the View menu and then choose
the Find in Files tab in the Output window.

Setting Editor Properties

9-18

9.5 Setting Editor Properties

Code Composer allows you to customize editor options which you use
frequently.

To Set Editor Properties

1) From the menu, select Option->Editor. The Editor Properties dialog box
appears.

2) The Editor Properties dialog offers the following options:

Tab Stops . Type the number of tab stops you want in the Tab Stops box.
The default is four tabs.

Open files as read only . Check the Open files as read only checkbox to
prevent unintentional modifications to open windows. Toggling this option
off allows you to make modifications to any open files.

Save before running tools . If you check the Save before running tools
checkbox, you are prompted to save your files with a Save Changes
dialog box. This occurs when a project build is invoked after any changes
to any of the project files currently open.

Recent Files. Select the number of recently-used files to appear in menu
items such as File->Recent Source Files, Project->Recent Project Files,
etc.

3) Click OK.

Using Bookmarks

The Integrated Editor 9-19

9.6 Using Bookmarks

You can set bookmarks to find and maintain key locations within your source
files. A bookmark can be set on any line of any file. Bookmarks that are set
are saved with a Code Composer workspace so that they can be recalled at
any time.

To Set a Bookmark from the Edit Window

To set a bookmark while editing source code in an Edit window:

1) Place the cursor in the line to be bookmarked.

2) Right-click in the Edit window. From the context menu, select Bookmarks.
From the Bookmarks submenu, select Set a Bookmark.

OR

Press the Edit:Toggle Bookmark button on the Edit toolbar.

Edit:Toggle Bookmark shortcut:

Notice that the bookmarked line is highlighted in the Edit window.

Use the Edit:Next Bookmark and Edit:Previous Bookmark buttons on the Edit
toolbar to quickly advance from one bookmark to another.

Edit:Next Bookmark shortcut:

Edit:Previous Bookmark shortcut:

To View the List of Bookmarks

Use any of the following methods to view the list of bookmarks that are
currently set:

❏ Select the Bookmarks tab on the Project View window.

Clicking on any bookmark in the list opens the file that contains the
bookmark and places the cursor at the location of the bookmark.

❏ Select the Edit->Bookmarks command to open the Bookmarks dialog
box.

❏ Press the Edit:Bookmarks button on the Edit toolbar to open the
Bookmarks dialog box.

Edit:Bookmarks shortcut:

Using Bookmarks

9-20

9.6.1 Managing Your Bookmarks

Use the Bookmarks dialog to manage all of your bookmarks.

The Bookmarks dialog displays the complete list of the currently available
bookmarks. To select a bookmark from the list, simply click on the desired
bookmark.

The Bookmarks dialog offers the following options:

Go To After selecting a bookmark from the list, Go To opens the file
that contains the bookmark (if it is not already open) and
places the cursor at the location of the bookmark.

Close Closes the Bookmarks dialog box.

Help Provides help on using the Bookmarks dialog box.

Edit After selecting a bookmark from the list, Edit opens the
Bookmark Properties dialog box.

Add Opens the Bookmark Properties dialog box.

Remove After selecting a bookmark from the list, Remove deletes the
bookmark from its current location.

9.6.2 Editing Bookmark Properties

Use the Bookmark Properties dialog box to add a new bookmark or edit an
existing bookmark.

Provide the following information:

File After selecting Add in the Bookmarks dialog, you will notice
that the Browse button is activated. Press the Browse button
and the Open dialog box appears. Select the file that will
contain the bookmark and click Open.

Line Specify the line number that is to be bookmarked.

Description Type a meaningful description of the bookmark. This
description will appear in the Bookmarks listing.

Click OK to accept the parameters.

10-1

Chapter 10

The Project Environment

Code Composer provides integrated program management using projects.
The project manager keeps track of:

❏ Source files and object libraries needed to build a target DSP program or
library.

❏ Compiler, assembler, and linker options used to build the program or
library.

❏ Include file dependencies for your program.

The information for each project is stored in a separate file. This can be either
a makefile (.mak extension) or it can be part of your linker command file (.cmd
extension).

10.1 Creating, Opening, and Closing Projects . 10–2

10.2 Adding Files to the Project . 10–4

10.3 Scanning Dependencies . 10–6

10.4 Project Environment Build Options . 10–8

10.5 Project Build Commands . 10–8

Topic Page

Creating, Opening, and Closing Projects

10-2

10.1 Creating, Opening, and Closing Projects

Use the following procedures to create, open, and close project files.

To Create a New Project

1) Select Project->New from the menu. The Save New Project As dialog box
appears. If the project directory you wish to use is not visible, navigate to
the correct directory. Use this directory to store project files as well as the
object files generated by the compiler and assembler. It is a good idea to
use a different directory for each new project. This keeps the object files
from different projects separate, and makes it possible to assign different
compiler, assembler, and linker options for each project.

2) In the "File name" field, type the new project filename and click Save. A
new project file is created with an empty project list. If an existing project
is already open, its compiler, assembler, and linker options are copied to
the new project and the existing project is automatically closed. If no
project is open, the new project inherits the default project options. Notice
that Code Composer's title bar changes to display the name of the new
project.

3) Add your files to the project list and choose Done. For more details, see
Section 10.2, Adding Files to the Project.

To Open an Existing Project

1) Select Project->Open from the menu. This Project Open dialog box
appears. If the directory where your file exists is not selected, navigate to
the correct directory.

2) Highlight the project file you wish to use in the main window and choose
Open. If an existing project is already open, it is automatically closed.
When the file is successfully loaded, Code Composer's title bar changes
to display the name of the new project. If the file is not loaded, an error
message appears indicating that the file is corrupt. Verify that you have
selected the correct project file. If the file is corrupt, you must create a
new project from scratch. If you have upgraded from a previous version
of Code Composer, you may get a warning messages that says the
project file is in an older format. In this case, press the OK button to
convert the project file to the new format without any loss of data. If you
do not convert the project file, it cannot be opened.

Creating, Opening, and Closing Projects

The Project Environment 10-3

To Close a Project

To close a project, perform any of the following:

❏ Select Project->Close from the menu.
❏ Create a new project.
❏ Open another project.

Using the Project View Window

You can manipulate projects within Code Composer by selecting
View->Project from the menu. This displays the Project View window, where
you see the entire project. To add a file to the project or change any of its
options, right-click on the project name and select the appropriate option from
the context menu.

Drag-and-Drop Capabilities (Windows 95/NT)

Code Composer supports drag-and-drop capability for Windows 95/NT. You
can load any project (*.mak) or source (*.c, *.asm, *.h, *.cmd) file by dragging
the file from Windows Explorer directly into the Project View window. You
must first activate this window by selecting View->Project from the menu.

Adding Files to the Project

10-4

10.2 Adding Files to the Project

The project manager identifies files by their file extension. The following table
lists the assumptions made based on the file extension.

Extension Assumptions

. or .c* C source file. The project manager tries to compile
and link this file.

.a* or .s* Assembly source file. The project manager tries to
assemble and link this file.

.o* or .lib Object or Library file. The project manager tries only
to link this file.

.cmd Linker command file. The project manager tries to
link using this file. See the Code Generation Tools
online help for more information on the linker
command file.

other Unrecognizable file. The project manager does not
let you add this file to the project.

Note: Include or header files

Do not try to specify include or header files directly. These files are
automatically added to the project by scanning the source files for
dependencies.

Only one linker command file can be specified for a project. Otherwise, there
is no limit on the number of files that can be added to a project.

All files added to the project are displayed with absolute path names. They
are stored, however, with relative path names so that the project can be easily
moved to a different directory. The absolute path names are determined
every time the project is opened. Path names are stored relative to the project
make file. For example, if your make file is in path c:\version1\linker\make\
and your source file is in path c:\version1\source\ then the relative path to
your source file is ..\..\source\. Each ..\ indicates to backup one directory level.
If your source file is stored on another drive, the source file is stored with an
absolute path since no relative path exists. If you now move or copy your
project make file from c:\version1\linker\make\ to c:\version2\linker\make\,
Code Composer assumes the source file is in c:\version2\source when you
open the project. When you move a make file, rescan all dependencies to
make sure that Code Composer has resolved all references.

Adding Files to the Project

The Project Environment 10-5

To Add Files to the Project

1) From the menu, select Project->Add Files to Project. The Add Files to
Project dialog box appears.

OR

Select View->Project from the menu to open the Project View window,
right-click on the project name, and select Add Files.

2) In the Add Files to Project dialog, specify a file to add. If the file does not
exist in the current directory, browse to the appropriate location. Use the
Files of Type drop-down list to set the type of files that appear in the "File
name" field.

3) Click Open to add the specified file to your project.

The Project View window displays the contents of your project. To expand the
Project list, click the + sign next to Project. The Project View is updated when
you add a file to your project.

Files are grouped into separate folders:

Include Contains all header/include files: *.h

Libraries Contains all library files: *.lib

Source Contains all source files: *.c, *.asm

The linker command file (*.cmd) appears directly under the project file
(*.mak).

To Remove a File From the Project

1) Select View->Project.
2) Right-click with your mouse on the project file to remove.
3) Select Remove from Project from the context menu.

Scanning Dependencies

10-6

10.3 Scanning Dependencies

To determine which files must be compiled during an incremental compile, the
project must maintain a list of include file dependencies for each source file.
Code Composer creates a dependencies tree whenever you build a project.
Code Composer does this by recursively scanning all the source files in the
project list for the #include, .include, and .copy directives and adds each
included file name to the project list. Because include files are automatically
added to the project, you must not add them yourself.

The project manager searches for include or header files, based on the
source file type. The current directory is the path of the source file. Relative
paths are resolved with respect to the current directory. Searches are
performed in the following order:

For C Source Files

1) The current directory

2) The list of include paths in the compiler options (-i) from left to right

3) The list of include paths specified by the C_DIR environment variable
from left to right

For Assembly Source Files

1) The current directory

2) The list of include paths in the assembler options (-i) from left to right

3) The list of include paths specified by the A_DIR environment variable
from left to right

Code Composer minimizes the time involved by performing incremental
dependency scans. That is, Code Composer only scans new files or files that
have changed since the last dependency scan. Changes to a file are detected
by any difference in the date and time of a file between dependency scans.
This includes files that have been replaced by older backup versions.

To Regenerate Include File Dependencies

You may use any of the following methods to regenerate include file
dependencies:

❏ Select Project->Show Dependencies from the menu bar. This performs
an incremental scan for dependencies before displaying the dependency
tree for entire project.

❏ Select Project->Build from the menu bar. This performs an incremental
scan for dependencies before performing an incremental build.

Scanning Dependencies

The Project Environment 10-7

❏ Select Project->Scan All Dependencies from the menu bar. You may also
select this option by right-clicking on the project name in the Project View
display. This scans all files for dependencies, regardless of whether or not
they have changed since the last dependency scan.

To Display Include File Dependencies

1) If the project is not already open, select Project->Open from the menu
bar. The Project Open dialog box appears.

2) In the main window, select the file name of the project you want to
display. If the project is not visible in the window, navigate to its location.

3) Select Project->Show Dependencies from the menu bar. This performs
an incremental scan for dependencies. This ensures the dependency
tree is up to date.

Whenever a dependency scan occurs, the Dependencies status window
appears. If any of the files listed in the window are displayed in red, this
particular file has not been resolved by Code Composer and, when invoked,
the incremental build rebuilds these files. You may cancel the scan by
choosing the Cancel button. However, this aborts the command that initiated
the dependency scan.

To Exclude a File From Dependency Scanning

Code Composer uses an exclusion file, exclude.dat, to prevent scans for
dependencies on certain files. In its initial state, exclude.dat contains a list of
system include files that are unlikely to change. You can edit this file to
exclude scans of other files, such as your header files that never change or
to include scans of system files that you need to alter.

Project Environment Build Options

10-8

10.4 Project Environment Build Options

The project environment contains all of the compiler, assembler, and linker
options that are used to build your program.

To Specify Options for the Compiler, Assembler, or Linker

1) Select the Project->Options command from the menu bar. The Build
Options dialog box appears.

OR

Right-click on the project name in the Project View window and select
Options from the context menu.

2) Select the appropriate tab: Compiler, Assembler, or Linker.

3) Select the options to be used when building your program.

4) Click OK to accept your selections.

10.5 Project Build Commands

The following commands allow you to compile and/or link your source files.
You may use the shortcut buttons instead of the menu commands.

Compile File

Select Project->Compile File from the menu to compile only the current
source file. This command does not link the file.

Incremental Build

Select Project->Build to build the current project. This compiles only the files
that have changed since the last build. Code Composer determines whether
a file must be compiled by comparing the time stamp of the source file to that
of the object file. If the source file's time stamp is greater than the
corresponding object file's time stamp, the file is re-compiled. To determine
whether the executable file must be re-linked, Code Composer compares the
time stamp of each object file to that of the executable file and re-links if the
object file's stamp is greater.

Project Build Commands

The Project Environment 10-9

 Rebuild All

Select Project->Rebuild All to re-compile all files in the current project and
re-link the executable.

 Stop Build

You can abort the build process by selecting Project->Stop Build from the
menu. The build process stops only after the current file is finished compiling.

10-10

11-1

Chapter 11

Profiling Code Execution

Code Composer allows you to collect execution statistics about specific areas
in your code. This is called profiling, and it gives you immediate feedback on
your application's performance and lets you optimize your code. You can
determine, for instance, how much CPU time DSP algorithms use. You can
also profile other processor events, such as the number of branches,
subroutine calls, or interrupts taken.

Note: Profiling Not Available for 'C2xx

Code Composer does not support profiling for 'C2xx DSPs, for both the
emulator and simulator.

11.1 Profile Clock. 11–2

11.2 Profile Points . 11–6

11.3 Hardware Profile Points . 11–9

11.4 Viewing Statistics . 11–10

11.5 Divide And Conquer Using Profile Points 11–12

Topic Page

Profile Clock

11-2

11.1 Profile Clock

The profile clock counts processor instruction cycles or other events during
run and single step operations when profiling.

The profile clock is accessible as a variable named CLK and through the
Clock window. The CLK variable can be viewed in the Watch window and
modified in the Edit Variable dialog box. CLK is also available to user-defined
GEL functions.

Instruction cycles are measured differently, depending on which DSP device
driver you are using. For device drivers that communicate through the JTAG
scan path, instruction cycles are counted using the on-chip analysis
capabilities of the processors. Other device drivers may require the use of
other types of timers. To manage these resources, you must enable and
disable the profile clock.

The simulator uses the simulated on-chip analysis interface of a DSP to
gather profiling data. When the clock is enabled, Code Composer takes over
the necessary resources to implement instruction cycle counting. When it is
disabled, the resources are available to you. See Section 11.1.2, Profile Clock
Accuracy for more information on how cycles are counted.

You can use these functions as follows:

To Enable/Disable the Profile Clock

Select Profiler->Enable Clock from the menu. A check mark is displayed
beside this menu item when the clock is enabled and is not present when the
clock is disabled.

To View the Profile Clock

Select Profiler->View Clock from the menu. The Clock window appears and
displays the value of the CLK variable.

To Reset the Profile Clock

Edit the CLK variable and set it to 0, or double-click on the contents of the
Clock window.

Profile Clock

Profiling Code Execution 11-3

11.1.1 Profile Clock Setup

To change the profile clock setup, select Profiler-Clock Setup from the menu.
This opens the Clock Setup dialog box.

In the Instruction Cycle Time field, you can enter the time to execute one
instruction. This information is used to convert cycle counts to time or
frequency for displaying profiler statistics.

Select the event to profile in the drop-down list of the Count field. Depending
on your device driver, CPU cycles may be the only list option. However, some
device drivers make use of the on-chip analysis capabilities provided on the
TMS320C5x or TMS320C4x processors for profiling other events. These may
include the number of interrupts, the number of subroutine or interrupt
returns, the number of branches, the number of subroutine calls, etc. For
example, if you select branches, the CLK variable counts the number of
branches taken instead of counting CPU cycles.

Note: Simulator - Profile Events

The simulator only displays the CPU Cycles parameter in the Count field,
since it does not profile other DSP events via its interface with a simulated
DSP target.

You can use the Reset Option parameter to determine how the CLK variable
is accumulated. If you select the Manual radio button, the CLK variable
accumulates instruction cycle counts without resetting the clock. This is
similar to TI simulator operation. If you select the Auto radio button, the CLK
variable is automatically reset (set to 0) before running or stepping the target
processor. Therefore the CLK variable only displays the cycles since the last
run or step. This is similar to TI emulator operation.

Profile Clock

11-4

You can use the Pipeline Adjustment field to offset the number of cycles used
to flush the processor's pipeline when servicing breakpoints. Every time the
processor stops to service breakpoints, halt the processor, or step the
processor, it must flush the pipeline. The cycles needed to do this depend on
the number of program wait states, which is not known. To obtain more
accurate cycle counts, you may specify a value to be subtracted from the
cycle count to compensate for this effect. For example, if you are running the
program from zero-wait-state memory on a 'C4x processor with a 4-stage
pipeline, you can enter 3 into this field. This means that when single stepping
a NOP instruction, the CLK variable increments by 1 instead of 4.

11.1.2 Profile Clock Accuracy

During program execution, the profile clock accurately counts instruction
cycles, including cycles for wait states and pipeline conflicts. To read the cycle
count from the target processor, however, the processor must be halted.
Several types of measurement errors are introduced when halting the
processor, due to pipeline flushing, missing pipeline conflicts, and extra
program fetches.

Every time the processor stops, the pipeline must be flushed. This results in
counting extra instruction cycles. After it is flushed, it avoids conflicts with the
next instruction that would cause an extra instruction cycle to be counted
because the next instruction is not executed. This results in fewer instruction
cycles being counted than there should be. If the program is halted by a
software breakpoint, extra instruction cycles are used to fetch and decode the
breakpoint instruction. Usually the extra fetch and decode is overlapped with
the cycles that flush the pipeline; however, if the instruction fetch does not
have zero wait states, extra wait states are counted.

Setting the Pipeline Adjustment field with an appropriate number is not
enough to compensate for all the measurement errors, especially the errors
due to missed pipeline conflicts. As a result, the more times you step or run
the program, the less accurate the profile clock is. Similarly, the more
breakpoints, Probe Points, and profile points that are encountered, the less
accurate the clock is.

Profile Clock

Profiling Code Execution 11-5

To Obtain Accurate Instruction Cycle Counts

Use the following steps to obtain an accurate cycle count between two points,
A and B, in your program:

1) Set a breakpoint at point C that is at least four instructions past point B in
the program flow.

2) Set a breakpoint at point A and run to that breakpoint.

3) Reset the clock, and remove the breakpoint at point A.

4) Run to the breakpoint at point C and record the value of the CLK variable,
which represents the cycle count between points A and C.

5) Repeat steps 2 through 4 using point B instead of point A. Make sure your
program is in the same state as it was for measuring the cycles between
point A and point C.

6) Subtract the cycle count between points B and point C from the cycle
count between point A and point C. This eliminates the measurement
errors introduced by stopping the processor at point C.

Profile Points

11-6

11.2 Profile Points

Profile Points are special breakpoints that capture profiling information at
specific locations in the program. Each profile point counts the number of
times the profile point was hit and keeps statistics on the number of cycles or
other events that have elapsed since the previous profile point was hit. Unlike
breakpoints, profile points resume execution after accumulating their
statistics. Once a profile point is set, it can be enabled or disabled.

The profile clock must be enabled for it to maintain statistics on the instruction
cycles or other events. When the profile clock is disabled, profile points are
able to count the number of occurrences of each profile point, but they cannot
generate other statistics.

To Add a Profile Point

You can create profile points by placing the cursor on the line in the source
file or Dis-Assembly window where you want the profile point to be and
clicking the Profile Point shortcut on the toolbar.

Profile Point Button:

To Delete an Existing Profile Point

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) Select a profile point in the Profile Point window.

3) Press the Delete button.

4) Press the OK button to close the dialog box.

Profile Points

Profiling Code Execution 11-7

To Delete All Profile Points

From the Project toolbar, press the Remove All Profile Points button:

Remove All Profile Points Button:

You can also delete all profile points using menu commands:

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) Press the Delete All button.

3) Press the OK button to close the dialog box.

11.2.1 Enabling and Disabling Profile Points

Once a profile point is set, it can be disabled or enabled. Disabling a profile
point provides a quick way of suspending its operation temporarily, while
retaining the location and type and accumulated statistics of the profile point.

To Enable a Profile Point

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) In the Profile Point window, select the profile point you wish to enable
from the list. The profile point checkbox is empty if the point is currently
disabled.

3) With the left mouse button, click on the profile point checkbox. The
checkbox now contains a checkmark, indicating that the profile point is
enabled.

4) Press the OK button to close the dialog box.

Profile Points

11-8

To Disable a Profile Point

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) In the Profile Point window, select the profile point you wish to disable
from the list. The profile point checkbox contains a checkmark if the point
is currently enabled.

3) With the left mouse button, click on the profile point checkbox. The
checkbox is now empty, indicating that the profile point is disabled.

4) Press the OK button to close the dialog box.

To Enable All Profile Points

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) Press the Enable All button.

3) Press the OK button to close the dialog box.

To Disable All Profile Points

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) Press the Disable All button.

3) Press the OK button to close the dialog box.

Hardware Profile Points

Profiling Code Execution 11-9

11.3 Hardware Profile Points

Hardware profile points operate the same way as regular profile points,
except they are implemented using hardware breakpoints instead of software
breakpoints (see Section 4.3, Hardware Breakpoints). Hardware profile
points are useful for profiling in read-only memory, or if you only want to profile
every Nth time at a given location.

Note: Target Processor Halts

The target processor is temporarily halted when a hardware profile point is
encountered. Therefore, the target application may not be able to meet
real-time constraints when using hardware profile points.

Note: Hardware Profile Points Not Supported

Hardware profile points are usually only available with JTAG based 'C5x or
'C4x device drivers. They cannot be implemented with a simulated DSP
target.

To Add a Hardware Profile Point

1) From the menu, select Profiler->Profile Points. The Break/Probe/Profile
Points dialog box appears.

2) In the Profile Type field, select H/W profile at location.

3) In the Location field, type the location where you want to set the profile
point. You can use either of the methods:

■ For an absolute address, enter any valid C expression, the name of
a C function, or a symbol name.

■ Enter a profile point location based on your C source file. This is
convenient when you do not know where the C instruction is in the
executable. The format for entering in a location based on the C
source file is as follows: fileName line lineNumber

4) Press the Add button to create a new hardware profile point.

5) Press the OK button to close the dialog box.

Viewing Statistics

11-10

11.4 Viewing Statistics

To view profiler statistics, select Profiler-View Statistics from the menu bar.
This opens the Profile Statistics window.

The Profile Statistics window displays the results for each profile point. Each
point displays the number of times it has been hit and the statistics on the
number of cycles or other events that have elapsed since the previous profile
point was hit. The statistics include the minimum, maximum, total, and
average number of cycles.

The Profile Statistics window updates every time a profile point is hit, but too
many window updates can slow down the profiling performance. There are
two ways to reduce the number of times the window updates: connect the
window to a Probe Point, or open and close the window as needed. When you
connect the Profile Statistics window to a Probe Point, it only updates when
the Probe Point is hit. Therefore, you have control over when in your
application the Profile Statistics window updates. This window only displays
profiler results and is not needed to collect profiler statistics; therefore, it does
not need to be open all the time.

To Clear Statistics for a Profile Point

1) Select the desired profile point in the Profile Statistics window using the
mouse or the cursor keys. The selected profile point is outlined with a
dotted line.

2) Press the right mouse button and choose Clear Selected. The count,
average, total, maximum, and minimum fields are cleared to 0. There is
no undo for this action on the Edit menu.

To Clear Statistics for All Profile Points

Press the right mouse button and select Clear All. All count, average, total,
maximum, and minimum fields are cleared to 0. There is no undo for this
action on the Edit menu.

Viewing Statistics

Profiling Code Execution 11-11

To Change the Display Options

1) Click on the Profile Statistics window to make it current.

2) Press the right mouse button and select Properties->Display Options.
The Profiler Display Options dialog box appears.

You may select either the Left, Center, or Right radio buttons in the
Justification field to change the display of data.

Select either the Cycle, Time, or Frequency radio buttons in the Units field to
change the unit of measure for the Profile Statistics window. Units of measure
can either be cycle counts, time (seconds), or frequency (Hertz). You can
configure the instruction cycle time in the Clock Setup dialog box (see Section
11.1.1, Profile Clock Setup). Cycle times are converted to frequency by taking
the reciprocal. Units of frequency may be useful, for example, in determining
if your program can handle a given sampling frequency. Cycle counts are
converted to time by multiplying the cycle count by the instruction cycle time.

Divide And Conquer Using Profile Points

11-12

11.5 Divide And Conquer Using Profile Points

This section describes a procedure for optimizing your program for CPU
consumption using profile points. This procedure is suitable for both
assembly and C-language programs.

1) Compile your C program with full optimization enabled.

2) Setup input files and Probe Points to simulate your algorithm without
making changes to the source code. You must simulate your algorithm
because profile points slow down your program's execution.

3) Set a profile point in the main loop of your algorithm. Run your application
to generate profile statistics on the execution of your entire program. If
your program already meets real-time constraints, then your work is
finished.

4) Divide the main loop of your algorithm by placing several more profile
points in your main loop to divide the program into sections. Each profile
point measures the cycles required by the preceding section of the
program.

5) Run your application to accumulate statistics.

6) Sort the list of profile points in the Profile Statistics window to find which
section of code uses the most cycles. Set more profile points to further
subdivide that section.

7) Repeat steps 5 and 6 to get finer and finer profile resolution.

8) Rewrite the smallest section of code that is using the most cycles and go
to step 1.

12-1

Chapter 12

The General Extension Language (GEL)

The General Extension Language (GEL) is an interpretive language similar
to C that lets you create functions to extend Code Composer's usefulness.
You create your GEL functions using the GEL grammar and then load them
into Code Composer. With GEL, you can access actual/simulated target
memory locations and add options to Code Composer's GEL menu. GEL is
particularly useful for automated testing and user workspace customization.
You can call GEL functions from anywhere that you can enter an expression.
You can also add GEL functions to the Watch window so they execute at
every breakpoint.

12.1 GEL Grammar . 12–2

12.2 GEL Function Definition . 12–3

12.3 GEL Function Parameters. 12–5

12.4 Calling GEL Functions and Statements . 12–7

12.5 Loading/Unloading GEL Functions . 12–10

12.6 Adding GEL Functions to the GEL Menu Using Keywords 12–11

12.7 Accessing the Output Window. 12–15

12.8 Autoexecuting GEL Functions Upon Startup 12–16

12.9 Viewing the Expression Queue . 12–18

12.10 Built-In GEL Functions . 12–19

Topic Page

GEL Grammar

12-2

12.1 GEL Grammar

GEL is a subset of the C programming language. You cannot declare host
variables, however; all variables must be defined in your DSP program and
exist on the actual/simulated target. The only identifiers that are not defined
on the target are GEL functions and their parameters. When a variable is
evaluated, the Code Composer debugger gets the necessary information
from the target. The COFF file with the symbol information must already be
loaded.

GEL supports the following types of statements:

❏ Function definitions
❏ Function parameters
❏ Calling GEL functions
❏ Return statements
❏ If-else statements
❏ While statements
❏ GEL comments
❏ Preprocessing statements

Example 12–1, A Basic Gel Function shows how a GEL function is defined.
Once a function is loaded, you can execute the function anytime by calling it
with the correct parameters. Calls such as: MyFunc(100, 0) or MyFunc(200)
are both valid.

Example 12–1. A Basic Gel Function

MyFunc(parameter1, parameter2)
{

if (parameter1 == parameter2)
 {
 a = parameter1;
 }
 else
 {

while (c)
 {
 b = parameter2;
 c--;
 }
 }
}

The symbols a, b, and c are assumed to be DSP target variables.

GEL Function Definition

The General Extension Language (GEL) 12-3

12.2 GEL Function Definition

GEL functions are defined as follows, where items in italics are variables:

funcName GEL function

parameters Valid GEL parameters

statements Valid GEL statements

GEL functions are defined in text files with a .gel extension. A GEL file can
contain many GEL function definitions.

GEL functions do not identify any return type or need any header information
to define the types of parameters they require. This information is obtained
automatically from the data value.

As with standard C, a GEL function definition cannot be embedded within
another GEL function definition.

In Example 12–2, Square Function, we are squaring the value the user
passes to the function.

Example 12–2. Square Function

square(a)
{
 return a*a;
}

If you add a call to this function in the Watch window, it looks like this:

square(1.2) = 1.44
square(5) = 25

Since a is a GEL parameter, you do not have to define it in the DSP target.

You can follow each parameter with an optional string that describes the use
of the parameter, as shown in Example 12–3, Descriptive Parameter Strings.
This description is used in the dialog box that is created for dialog function.

funcName([parameter1 [, parameter2 ... [, parameter6]]])
{

statements
 }

GEL Function Definition

12-4

Example 12–3. Descriptive Parameter Strings

dialog Init(filename "File to be Loaded", CPUname "CPU Name",
initValue "Initialization Value")
{
 GEL_Load(filename, CPUname);
 a = initValue;
}

The dialog adds this function to the menu bar. Strings are given for the
parameter to provide a description on the parameter entry dialog box. In the
statement a = initValue, the letter a is not defined in the parameter list;
therefore, it must be defined on the actual/simulated target. If it is not, an error
occurs when you call this function. Note the call to the built-in function
GEL_Load; this function requires a string identifying the file name for the first
parameter and the CPU name. The CPU name parameter is optional and is
useful in setting up multiple processors. You must pass a string for the first
parameter. An example of a valid call to this function is:

Init("c:\\mydir\\myfile.out", "cpu_a", 0).

GEL Function Parameters

The General Extension Language (GEL) 12-5

12.3 GEL Function Parameters

You can pass arguments to a GEL function by defining parameters in the GEL
function definition. Unlike C function parameters, the parameter type is not
defined; only the parameter name is required. The parameter type is
determined automatically from the argument passed. GEL parameters can
be any of the following:

❏ An actual or simulated DSP target symbol value, if a target symbol is
passed

❏ A numerical constant, if any expression or constant value is passed

❏ A string constant, if a string constant is passed

The argument that is passed at execution time determines the values the
parameter takes on.

The following is a GEL function definition:

Initialize(a, filename, b)
{
 targVar = b;
 a = 0;
 /*a DSP symbol must be passed for parameter 'a' */
 GEL_Load(filename);
 /* a string constant must be passed for filename */
 return b*b;
}

The following is an example of a correct call to the previous GEL function:

Initialize(targetSymbol, "c:\\myfile.out", 23 * 5 + 1.22);

When the function is executed, parameter a is determined to be the DSP
symbol targetSymbol, parameter filename is determined to be the string
constant “c:\myfile.out”, and parameter b is calculated to be the constant
value 116.22. These values are used in the function in place of the
parameters.

If a DSP symbol was not passed for parameter a, you get a run-time error
when executing the second statement, a = 0. For example, if you passed a
constant value of 20, the second statement is equivalent to 20 = 0, which is
not a valid assignment statement.

Even if a valid DSP symbol is passed for the first parameter, you must ensure
that the symbol information is loaded into the Code Composer debugger
when you execute the GEL function. If the symbol targetSymbol is defined,
the above call to this function assigns 0 to the target symbol.

GEL Function Parameters

12-6

GEL parameters can be numerical values or strings, such as 1, 3.1415,
0x100, c:\\filename, etc. For numerical parameters, GEL allows you to pass
any valid C expression. The expression is evaluated before it is passed to the
GEL function. If the final value contains a period or the exponent sign (for
example 1.2 or 1.34e4), it is assumed to be of type real; otherwise, it is
assumed to be an integer.

You can call the initialize GEL function with either of the following formats:

Initialize(targetSymbol, "c:\\mydir\\myfile.out",10);
Initialize(targetSymbol, "c:\\filename.out", 1.2);

In the first call, parameter b is assumed to be an integer value. The second
call determines the input to be of type real. If the target variable targVar is of
type int, then parameter b is truncated during the assignment to targVar.

When you define a GEL function using parameter symbols, passing it an
argument is optional. This is because the parameter values are initialized to
0 for numerical values and to a null string otherwise. If no parameters are
passed, the function assumes the default values for the parameters. This
means you can also call the previous function as follows:

Initialize();
Initialize(targSymbol,"c:\\myfile.out");

The first call assigns targVar to 0. However, an error is encountered when it
tries to execute the statement GEL_Load(filename). With no argument
passed for the filename, the statement is equivalent to GEL_Load("") and
results in an Invalid File Name error. You also get an error on the statement a
= 0. The second call to the Initialize function passes only two arguments to
the function. The third is automatically assigned to 0.

GEL is very loosely defined, which provides the flexibility to make GEL
function calls simple if you use default values. It also provides you the
opportunity to pass more parameters if you wish. You can see this with GEL
built-in functions, such as TextOut which can take up to six arguments. For
an advanced application, you may want to use all the parameters to provide
great control over the output. You can also call this function using only one
parameter, as follows:

GEL_TextOut("Hello World!")

Calling GEL Functions and Statements

The General Extension Language (GEL) 12-7

12.4 Calling GEL Functions and Statements

You can call a GEL function from anywhere you can enter a valid C
expression. You can call a GEL function from any dialog box that accepts a
valid C expression or from within another GEL function. Recursive GEL
function calls are not supported, however. When a GEL function is executing,
you cannot run another instance of it.

Passing arguments to a GEL function is optional. Omitted arguments assume
default values. See Section 12.3, GEL Function Parameters for more details.

The following sections describe several GEL statements that use C syntax.

12.4.1 GEL Return Statement

GEL supports the standard C return statement within a function. The general
form is:

A function does not need to return a value; a return statement with no
expression causes control, but no useful value, to be returned to the caller.
The same thing happens when the end of a function is reached without
encountering a return statement. The calling function can ignore a value
returned by a function.

Unlike C, GEL function definitions do not specify their return type. The return
type is determined during run time.

12.4.2 GEL If-Else Statement

GEL supports the standard C if-else statement. The general form is:

Only one of the two statements associated with an if-else statement is
executed. If the expression is true, statement1 is executed; if not, statement2
is executed. Each statement can be a single statement or several statements
in braces, as shown in Example 12–4, If-Else Statement.

return expression;

if (expression)
statement1

else
statement2

Calling GEL Functions and Statements

12-8

Example 12–4. If-Else Statement

if (a == 25)
 b = 30;

if (b == 20)
{
 a = 30;
 c = 30;
}
else
{
 d = 20;
}

12.4.3 GEL While Statement

The GEL while statement is similar to the standard C while statement, but the
GEL version does not support embedded continue or break statements. The
general form is:

In this statement, the expression is evaluated. If it is true (nonzero), statement
is executed and expression is reevaluated. This cycle continues until
expression becomes false (0), at which point execution resumes after the
statement. The statement can be a single statement or several in braces, as
shown in Example 12–5, While Statement.

Example 12–5. While Statement

while (a != Count)
{
 dataspace[a] = 0;
 a--;
}

12.4.4 GEL Comments

GEL supports standard C comments within a file. GEL comments are
delimited by the characters /* and */, and may span several lines.

while (expression)
statement

Calling GEL Functions and Statements

The General Extension Language (GEL) 12-9

12.4.5 GEL Preprocessing Statements

GEL supports the standard #define preprocessing keyword. This is the only
preprocessing keywords currently available.

A control line such as the following causes the preprocessor to replace
subsequent instances of the identifier with the given sequences of tokens:

#define identifier token-sequence

Leading and trailing white spaces around the token sequence are discarded.

A control line such as the following, where there is no space between the first
identifier and the open parenthesis, is a macro definition with parameters
given by the identifier list:

#define identifier(identifier-list) token-sequence

When a macro has been defined using the #define keyword, you may use it
anywhere in that file as well as in any other files that are loaded subsequently
into Code Composer.

Loading/Unloading GEL Functions

12-10

12.5 Loading/Unloading GEL Functions

When you have defined the file containing your GEL function(s), you must
load it into Code Composer before you can access the functions in that file.
The GEL functions then reside in Code Composer's memory and can be
executed at any time. The GEL function remains in memory until you remove
the corresponding file. When a loaded file is modified, you must unload it and
then reload it before the changes take effect.

The GEL loader checks for syntax errors in the file when it is loaded. It does
not check variables to see if they are defined. Therefore, you can load the
GEL function even before you load your COFF file containing the symbolic
information. This also allows you to reference GEL functions that are not yet
defined or loaded. The symbols must be defined when the GEL function is
executed. If Code Composer finds syntax errors while it is loading, it aborts
the loading process and displays the appropriate error message. You must fix
the error and then attempt to reload the file.

To Load a GEL File

1) Select File->Load Gel from the menu. This brings up the Open dialog
box.

2) Navigate to the file containing your GEL functions.

3) Either double-click on the file name in the main window of the dialog box,
or click on the file name and press the Open button.

OR

1) Select View->Project from the menu.

2) Right-click on the GEL Files folder in the Project View window.

3) Select Load GEL from the menu to load a GEL file.

To Unload a GEL File

1) Select View->Project from the menu to open the Project View window.

2) Double-click on the folder to view the individual GEL files.

3) Right-click with the mouse on the GEL files you wish to remove.

4) Select Remove from the menu.

Adding GEL Functions to the GEL Menu Using Keywords

The General Extension Language (GEL) 12-11

12.6 Adding GEL Functions to the GEL Menu Using Keywords

You can add GEL functions that you access frequently to the GEL menu. To
do this, use the menuitem keyword to create a new drop-down list of menu
items under the GEL menu on the menu bar. You can then use the keywords
hotmenu, dialog, or slider to add new menu items in the most recent
drop-down list. When you select the user defined menu item (under the GEL
menu), a dialog box or slider object appears.

12.6.1 The hotmenu Keyword

Use the hotmenu keyword to add a GEL function to the GEL menu that is
executed immediately when selected. The syntax is as follows:

This keyword is used for GEL functions that have no parameters to be
passed, as in Example 12–6, Hotmenu Keyword.

Example 12–6. Hotmenu Keyword

menuitem "My Functions";
hotmenu InitTarget()
{
 *waitState = 0x11;
}
hotmenu LoadMyProg()
{
 GEL_Load(“c:\\mydir\\myfile.out”);
}

This example adds the following items as sub-selections under the GEL
menu.

When you choose the InitTarget command, it is immediately executed. To call
GEL functions that require parameters to be passed, use the dialog keyword.

hotmenu funcName()
{

statements
}

Adding GEL Functions to the GEL Menu Using Keywords

12-12

12.6.2 The dialog Keyword

Use the dialog keyword to add a GEL function to the GEL menu and to create
a dialog window for parameter entry. When you select the function from the
GEL menu, a dialog window appears to prompt you for the parameter to enter.
The strings beside the parameters in the function declaration are for
parameter descriptions in the dialog box. The syntax of a dialog GEL function
is as follows:

paramName[1-6] Parameter variable name that is used inside the
function

"param1 definition" Parameter description that is printed on the dialog
window beside the field

You can pass up to six parameters to the added GEL function through the
dialog window. Example 12–7, Dialog Keyword shows how you can use the
dialog keyword to add two menu items.

Example 12–7. Dialog Keyword

menuitem "My Functions";
dialog InitTarget(startAddress "Starting Address", EndAddress
"End Address")
{

statements
}
dialog LoadMyProg()
{

statements
}

This example adds the following items as sub-selections under the GEL
menu.

dialog funcName(paramName1 "param1 definition", paramName2
"param2 definition",)
{

statements
}

Adding GEL Functions to the GEL Menu Using Keywords

The General Extension Language (GEL) 12-13

When you use the InitTarget command, the Function: InitTarget dialog box
prompts you for the start and end addresses.

When you enter values into the entry fields, press the Execute button to call
the GEL function with these parameters.

12.6.3 The slider Keyword

You can also use the slider keyword to add a GEL function to the GEL menu.
When you select the function from the GEL menu, a slider object appears to
control the value passed to the GEL function. Each time you move the
position of the slider, the GEL function is called with a new parameter value
reflecting the new position of the slider. You can only pass one parameter to
a slider GEL function. The format of a slider GEL function is as follows:

param_definition Parameter description that is printed on the slider object.

minVal An integer constant specifying the value to be passed to
the function when the position of the slider is at its lowest
level.

maxVal An integer constant specifying the value to be passed to
the function when the position of the slider is at its highest
level.

increment An integer constant specifying the increment added to the
value each time the slider is moved one position.

pageIncrement An integer constant specifying the increment added to the
value each time the slider is moved by one page.

paramName Parameter definition that is used inside the function.

slider param_definition(minVal, maxVal, increment, pageIncrement,
 paramName)
{

statements
}

Adding GEL Functions to the GEL Menu Using Keywords

12-14

Example 12–8, Slider Keyword uses the slide keyword to add a volume
control slider.

Example 12–8. Slider Keyword

menuitem "My Functions";
slider VolumeControl(0, 10, 1, 1, volume)
{
 /* initialize the target variable with the parameter passed
 by the slider object. */
 targVarVolume = volume;
}

Accessing the Output Window

The General Extension Language (GEL) 12-15

12.7 Accessing the Output Window

Several GEL built-in functions are available to print results to an output
window of Code Composer.

These commands can:

❏ Create unlimited number of output windows
❏ Create scrolling or fixed windows
❏ Pipe output to any window
❏ Print multicolor output
❏ Change highlight text
❏ Print formatted strings from the actual/simulated target

Commands that allow you to perform these tasks are:

GEL_OpenWindow Opens an output window

GEL_CloseWindow Closes an existing output window

GEL_TargetTextOut Outputs formatted target string

GEL_TextOut Prints text to output window

Autoexecuting GEL Functions Upon Startup

12-16

12.8 Autoexecuting GEL Functions Upon Startup

GEL functions allow you to configure the Code Composer environment
according to your needs. You may want to set up your environment each time
you start Code Composer. Instead of loading your GEL file using File->Load
Gel each time and then executing the GEL function, you can pass a GEL file
name to Code Composer on startup. This informs Code Composer to scan
and load the specified GEL file. It may not be enough to just load the GEL file;
you may also want to execute the function as well. You can do this by naming
one of your GEL functions in the specified file StartUp(). When a GEL file is
loaded into Code Composer, it searches for a function defined as StartUp().
If it finds this function in the file, it automatically executes it.

To Automatically Load and Execute a GEL Function (Windows 95/NT)

1) In Windows Explorer, select the Code Composer executable.

2) Right-click with your mouse on the executable and select Create
Shortcut.

3) Right-click on the shortcut that is created and select Properties. The
Shortcut Properties dialog box appears.

4) Select the Shortcut tab. The Target field shows the path name and file
name for the Code Composer executable, for example
c:\composer\cc_app.exe.

5) At the end of this path name, add the name of your GEL file that contains
your GEL functions. For example: c:\composer\cc_app.exe myfile.gel.

Now, each time you double-click on the Code Composer shortcut icon, the
GEL file myfile.gel is automatically scanned and loaded into Code Composer.
If you have a GEL function defined as StartUp(), it also gets executed.
Example 12–9, Startup GEL Function shows a typical GEL file that you may
load at startup.

Autoexecuting GEL Functions Upon Startup

The General Extension Language (GEL) 12-17

Example 12–9. Startup GEL Function

StartUp()
{
 /*Everything in this function will be executed on startup*/
 /*turn on our memory map*/
 GEL_MapOn();
 GEL_MapAdd(0, 0, 0xF000, 1, 1);
 GEL_MapAdd(0, 1, 0xF000, 1, 1);
}
dialog LoadMyFile()
{
 /* load my coff file, and start at main */
 GEL_Load("myfile.out");
 GEL_Go(main);
}

In the previous example, each time you start Code Composer the memory
mapping feature is turned on and the function LoadMyFile() is added to the
GEL menu.

Viewing the Expression Queue

12-18

12.9 Viewing the Expression Queue

All GEL functions and expressions are evaluated using the expression
evaluator. You can queue up as many expressions as needed for the
evaluator. Select the View->Expression List from the menu. The Expressions
Executing dialog box appears, which allows you to view the expressions that
are currently being evaluated by the expression evaluator.

You can abort any expressions that are currently being evaluated by the
expression evaluator by selecting the expression and pressing the Abort
button. This is useful if you are executing a GEL function that is stuck in an
infinite loop or is taking too much time to execute.

Built-In GEL Functions

The General Extension Language (GEL) 12-19

12.10 Built-In GEL Functions

There are several built-in GEL functions that allow you to control the state of
the actual/simulated target, access the actual/simulated target memory
locations, and to display results in the output window.

All GEL built-in functions are preceded with the prefix GEL_ to ensure they
are not confused with user-defined GEL functions. If you wish to avoid
preceding all calls to GEL built-in functions with GEL_, you can define
functions with your own names and call the GEL built-in functions within your
functions. For example, the following GEL function allows you to call the
GEL_Load() built-in functions just by typing-in Load.

Load(a)
{
 GEL_Load(a);
}

Note:

All built-in GEL functions and user-defined GEL functions consisting of GEL
statements can be invoked directly from the Code Composer GEL toolbar.
This toolbar consists of an expression field and an Execute button. To
invoke any GEL statement or user-defined function, enter the appropriate
function call in this field box and press Execute to evaluate the expression.
The expression dialog box maintains a history of the most recently invoked
GEL statements/user-defined functions; you may select any of these using
the scroll buttons. The GEL toolbar dialog box is displayed by default and
can be toggled on or off by selecting View->Gel Toolbar from the main
menu.

Built-In GEL Functions

12-20

Format GEL_Animate();

Parameters None

Description This function starts animating the DSP target.

Example GEL_Animate();

See Also GEL_Go, GEL_Halt, GEL_Run

u

Format GEL_BreakPtAdd(address, "Condition");

Parameters address: (required) indicates the location of the breakpoint

Condition: (optional) in quotes; condition used in the conditional breakpoint

Description This function sets a software breakpoint at a specific address. If a condition
is specified, the breakpoint becomes a conditional breakpoint and execution
stops only if the condition evaluates to true. The address can be an absolute
address, any C expression, the name of a C function, or the name of an
assembly language label.

Example GEL_BreakPtAdd(0x2000);
GEL_BreakPtAdd(TargetLabel + 100);
GEL_BreakPtAdd(0x2000, "a < b");

See Also GEL_BreakPtDel, GEL_BreakPtReset

GEL_Animate() Animate the DSP Target

GEL_BreakPtAdd() Add a Breakpoint

Built-In GEL Functions

The General Extension Language (GEL) 12-21

Format GEL_BreakPtDel(address);

Parameter address: (required)

Description This function clears a software breakpoint at a specific address. If there is no
software breakpoint set at address, nothing happens.

The address can be an absolute address, any C expression, the name of a C
function, or the name of an assembly language label.

Example GEL_BreakPtDel(0x2000);
GEL_BreakPtDel(TargetLabel + 100);

See Also GEL_BreakPtAdd, GEL_BreakPtReset

Format GEL_BreakPtReset();

Parameters None

Description This function clears all software breakpoints.

Example GEL_BreakPtReset();

See Also GEL_BreakPtAdd, GEL_BreakPtDel

Format GEL_CloseWindow("windowName");

Parameter windowName: (required) in quotes; name of window to be closed

Description This function closes an existing output window, where windowName specifies
the name of the window to be closed. This parameter must be the same as
the parameter given to the GEL_OpenWindow() function.

Example GEL_CloseWindow("My Window");
GEL_CloseWindow("Macro Output");

See Also GEL_OpenWindow, GEL_TargetTextOut, GEL_TextOut

GEL_BreakPtDel() Delete a Breakpoint

GEL_BreakPtReset() Clear all Breakpoints

GEL_CloseWindow() Close an Output Window

Built-In GEL Functions

12-22

Format GEL_Exit();

Parameters None

Description This function closes the active control window. For a single processor system,
it closes Code Composer completely.

Example GEL_Exit();

See Also GEL_CloseWindow

Format GEL_Go(address);

Parameter address: (optional) stop address

Description The GEL_Go function executes code up to a specific point in the program.
The address parameter is treated as a program-memory address. If you do
not supply an address, then GEL_Go becomes equivalent to the GEL_Run
GEL function.

It may occur that your code never reaches the address that you have
specified; in this case, the GEL function is never completed. To abort such an
expression, select View->Expression List to view all the expressions that are
being evaluated. Select the GEL_Go() expression and press the Abort button.

Example GEL_Go();
GEL_Go(main);

See Also GEL_Run, GEL_Halt

GEL_Exit() Close the Active Control Window

GEL_Go() Run to Specified Address

Built-In GEL Functions

The General Extension Language (GEL) 12-23

Format GEL_Halt();

Parameters None

Description This function halts the target program if it is executing.

Example GEL_Halt();

See Also GEL_Go, GEL_Run, GEL_RunF

Format GEL_Load("fileName","cpuName");

Parameters fileName: (required) in quotes; object file to be loaded

cpuName: (optional) in quotes; name of the CPU on which to load the file
(useful in a multiprocessor environment)

Description This function loads both an object file and its associated symbol table into
memory. If the file is not in the current directory of Code Composer, provide
a full path name within the string. Note that a double backslash escape
sequence is required to ensure you get a backslash into the fileName
parameter. The cpuName parameter must match the CPU name as
configured in the Code Composer multiprocessor setup. In a single processor
system, you do not need to fill this field.

Example GEL_Load("c:\\workdir\\test.out", “cpu_b”);

See Also GEL_SymbolLoad

GEL_Halt() Stop Execution

GEL_Load() Load a data file

Built-In GEL Functions

12-24

Format GEL_MapAdd(Address, Page, Length, Readable, Writeable);

Parameters Address: (required) starting address of a range in memory. This parameter
can be an absolute address, any C expression, the name of a C function, or
an assembly language label.

Page: (required) identifies the type of memory to fill:

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x which do not have more than one type
of memory, use 0 for this parameter. For simulated DSP targets, I/O Space
parameter is not supported.

Length: (required) defines the length of the range. This parameter can be any
C expression.

Readable: (required) defines whether the memory range is readable:
0 - Not readable
1 - Readable

Writeable: (required) defines whether the memory range is writeable:
0 - Not writeable
1 - Writeable

Description This function adds read/write permission for a range of target memory to the
memory map. If the range overlaps an existing entry, the attributes of the new
range take precedence in the memory map.

Example GEL_MapAdd(0x1000, 0, 0x300, 1, 1);

See Also GEL_MapDelete, GEL_MapOn, GEL_MapOff, GEL_MapReset

GEL_MapAdd() Add to the Memory Map

Built-In GEL Functions

The General Extension Language (GEL) 12-25

Format GEL_MapDelete(Address, Page);

Parameters Address: (required) identifies the memory range that is to be deleted from the
memory map. Address can be any valid address in the memory map range
that is to be deleted. This parameter can be an absolute address, any C
expression, the name of a C function, or an assembly language label.

Page: (required) identifies the type of memory to fill:

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x that do not have more than one type
of memory, use 0 for this parameter. For simulated DSP targets, the I/O space
parameter is not supported.

Description This function deletes a range of memory from the memory map. When
deleted, the Code Composer debugger does not read or write from/to the
target. If you display a memory location that is not readable, the debugger
does not display the value on the target, instead it displays the default value.

Example GEL_MapDelete(0x1000, 0);

See Also GEL_MapAdd, GEL_MapOn, GEL_MapOff, GEL_MapReset

GEL_MapDelete() Delete from the Memory Map

Built-In GEL Functions

12-26

Format GEL_MapOff();

Parameters None

Description This function disables memory mapping. Note that disabling memory
mapping can cause bus fault problems in the target because the Code
Composer debugger may attempt to access nonexistent memory. On power
up, the memory map is turned off by default.

Example GEL_MapOff();

See Also GEL_MapAdd, GEL_MapOn, GEL_MapDelete, GEL_MapReset

Format GEL_MapOn()

Parameters None

Description This function enables memory mapping. The Code Composer debugger does
not attempt to read from a map segment that is not readable or attempt to
write to a map segment that is not writeable. When mapping is first turned on,
the entire memory range is assumed to have no reading or writing
capabilities. You must add memory sections (using the GEL_MapAdd()
function) to allow the debugger to access valid sections. On power up,
memory mapping is turned off by default.

Example GEL_MapOn();

See Also GEL_MapAdd, GEL_MapOff, GEL_MapDelete, GEL_MapReset

Format GEL_MemoryReset()

Parameters None

Description This function resets the memory map by making all memory nonreadable and
nonwriteable.

Example MapReset();

See Also GEL_MapAdd, GEL_MapOff, GEL_MapOn, GEL_MapDelete

GEL_MapOff() Disable a Memory Map

GEL_MapOn() Enable Memory Mapping

GEL_MapReset() Memory Map Reset

Built-In GEL Functions

The General Extension Language (GEL) 12-27

Format GEL_MemoryFill(Startaddress, Page, Length, Pattern)

Parameters Startaddress: (required) first address in the block

Page: (required) identifies the type of memory to fill:

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x that do not have more than one type
of memory, use 0 for this parameter. For simulated DSP targets, the I/O space
parameter is not supported.

Length: (required) defines the number of words to fill

Pattern: (required) the value that is placed in each word in the block

Description GEL_MemoryFill() can be used to fill a block of target memory with a
specified pattern.

Example GEL_MemoryFill(0x1000, 0, 0x100, 0xa5a5);

See Also GEL_MemoryLoad, GEL_MemorySave

GEL_MemoryFill() Fill a Block of Memory

Built-In GEL Functions

12-28

Format GEL_ MemoryLoad(Startaddress, Page, Length, "fileName")

Parameters Startaddress: (required) first address in the block

Page: (required) identifies the type of memory to fill:

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x that do not have more than one type
of memory, use 0 for this parameter. For simulated DSP targets, the I/O space
parameter is not supported.

Length: (required) defines the number of words to fill

fileName: (required) in quotes; name of file to store the target data

Description You can use GEL_MemoryLoad() to load a block of target memory from a
specified file. The block of data is specified by the Startaddress, Page, and
Length. If the filename contains a *.out for the file extension, COFF format is
used; otherwise, the Code Composer debugger uses the header information
in the file to determine the file format.

Example GEL_MemoryLoad(0x1000, 1, 0x100, "c:\\workdir\\temp.dat");

See Also GEL_MemorySave, GEL_MemoryFill

GEL_MemoryLoad() Load a block of memory from a File

Built-In GEL Functions

The General Extension Language (GEL) 12-29

Format GEL_MemorySave(Startaddress, Page, Length, "fileName")

Parameters Startaddress: (required) first address in the block

Page: (required) identifies the type of memory to fill:

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x that do not have more than one type
of memory, use 0 for this parameter. For simulated DSP targets, I/O Space
parameter is not supported.

Length: (required) defines the number of words to fill

fileName: (required) in quotes; name of file to store the target data

Description GEL_MemorySave() can be used to save a block of target memory to a
specified file. The block of data is specified by the Startaddress, Page, and
Length. If the filename contains a *.out for the file extension, COFF format is
used; otherwise, C-Style Hex is used.

Example GEL_MemorySave(0x1000, 1, 0x100, "c:\\workdir\\temp.dat");

See Also GEL_MemoryLoad, GEL_MemoryFill

GEL_MemorySave() Save a block of memory to File

Built-In GEL Functions

12-30

Format GEL_OpenWindow("windowName", windowType, MaxLines);

Parameters windowName: (optional) in quotes; user-defined name of the output window.
If a name is not specified, Macro Output is assumed.

windowType: (optional) type of output window to create
0 - scrolling window
1 - nonscrolling

If a value is not specified for this parameter, scrolling is assumed.

MaxLines: (optional) if a nonscrolling window is specified, this parameter
specifies the maximum number of lines the window can hold. If a scrolling
window is specified, this argument is ignored.

Description This function creates an output window with name windowName. The
windowName is then used by other GEL functions to access the output
window. An unlimited number of output windows can be created.

Example GEL_OpenWindow();
GEL_OpenWindow("Macro Output", 1, 20);

See Also GEL_CloseWindow, GEL_TargetTextOut, GEL_TextOut

GEL_OpenWindow() Open an Output Window for Display

Built-In GEL Functions

The General Extension Language (GEL) 12-31

Format GEL_PatchAssembly(Address, Page, “PatchString”);

Parameters Address: (required) address to which to patch an assembly instruction

Page: (required) identifies the type of memory to fill

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x that do not have more than one type
of memory, use 0 for this parameter.

PatchString: (required) assembly string to patch into memory

Description This function loads an assembly string PatchString at Address on Page.

Example GEL_PatchAssembly(0x1000,1, “LAR AR4,#01h”);

Note: 'C6000 processors

Patch assembly is not supported for 'C6000 processors (actual or
simulated).

Format GEL_ProjectBuild();

Parameters None

Description This function builds the current project.

Example GEL_ProjectBuild();

See Also GEL_ProjectLoad, GEL_ProjectRebuildAll

GEL_PatchAssembly() Patch the Memory with Assembly Patch String

GEL_ProjectBuild() Build the Current Project

Built-In GEL Functions

12-32

Format GEL_ProjectLoad(“fileName”);

Parameter fileName: (required) project file to load

Description This function loads a specified project file.

Example GEL_ProjectLoad(“d:\\mydir\\myproject.mak”);

See Also GEL_ProjectBuild, GEL_ProjectRebuildAll

Format GEL_ProjectRebuildAll();

Parameters None

Description This function completely rebuilds the current project.

Example GEL_ProjectRebuildAll();

See Also GEL_ProjectBuild, GEL_ProjectLoad

Format GEL_Reset();

Parameters None

Description The Reset() function resets the target system and reloads the monitor. Note
that this is a software reset.

Example GEL_Reset();

See Also GEL_Restart, GEL_Run, GEL_Halt

GEL_ProjectLoad() Loads the Project

GEL_ProjectRebuildAll() Completely Rebuild Current Project

GEL_Reset() Reset Target System

Built-In GEL Functions

The General Extension Language (GEL) 12-33

Format GEL_Restart();

Parameters None

Description The GEL_Restart() function resets the program to its entry point. This
assumes that a program (with symbol information) has been loaded into the
target.

Example GEL_Reset();

See Also GEL_Reset, GEL_Run, GEL_Halt

Format GEL_Run(["Condition"]);

Parameter Condition: (optional) in quotes; condition that must be satisfied while the
target is executing. Once the execution reaches a breakpoint and the
condition is evaluated to be false, the debugger stops at that address.

Description This function starts executing code on the target. If a condition is specified,
the run function becomes a conditional run statement. That is, execution
continues while the statement is true. The statement is evaluated at each
breakpoint that is encountered.

Example GEL_Run();
GEL_Run("A != B");

See Also GEL_Restart, GEL_Go, GEL_Halt, GEL_RunF

GEL_Restart() Reset PC to Program Entry Point

GEL_Run() Run Code

Built-In GEL Functions

12-34

Format GEL_RunF();

Parameters None

Description This function disables breakpoints before it starts executing code on the
target. It also disconnects from the target system. This is useful if you need
to perform a hardware reset on your target system or if you need to
disconnect the JTAG or MPSD cable. The Code Composer debugger
reconnects to the target system and enables breakpoints if any access is
requested on the target system (e.g., memory read), or if the user halts the
processor.

Example GEL_RunF();

See Also GEL_Restart, GEL_Go, GEL_Halt, GEL_Run

Format GEL_SymbolLoad("fileName", “cpuName”);

Parameters fileName: (required) in quotes; COFF file containing the symbol information

cpuName: (optional) in quotes; name of the CPU on which to load the
symbolic information (useful in a multiprocessor environment)

Description This function loads the symbol information of the specified object file.
GEL_SymbolLoad() is useful in a debugging environment where the
debugger cannot, or need not, load the object code (for example, if the code
is in ROM). The entry point is not modified.

Example GEL_SymbolLoad("d:\\mydir\\myfile.out", “cpu_b”);

See Also GEL_Load

GEL_RunF() Run Free

GEL_SymbolLoad() Load Symbol Information Only

Built-In GEL Functions

The General Extension Language (GEL) 12-35

Format GEL_System("dosCommand", param1, param2, .. param4);

Parameters dosCommand: (required) DOS command (which may contain optional format
specifiers) that is to be executed

param1..param4: (optional) additional parameters that are substituted in the
dosCommand when a format specifier is encountered. These parameters
allow the user to pass values from the target or values passed from the user
to the DOS command.

Description The GEL_System function allows you to execute DOS commands from within
Code Composer. The output of the DOS Command is sent to an output
window in Code Composer. The DOS command can only be one that
produces a text output and does not require additional user input once it
starts executing.

The DOS command that is executed is actually the formatted string given by
dosCommand and the additional parameters (parm1..parm4). This allows
users to pass additional parameters (including values that are defined on the
DSP target) to the DOS command.

Format specifications always begin with a percent sign (%) and are read left
to right. When the first format specification (if any) is encountered, the value
of the first argument after format is converted and printed in dosCommand.
The second format specification causes the second argument to be
converted and printed, and so on. If there are more arguments than there are
format specifications, the extra arguments are ignored.

The GEL_System() GEL function is implemented using proprietary
technology and can be used to extend the capabilities of Code Composer.
You can use it to perform tasks (such as compiling) in the background and
pipe the results to the output window of Code Composer.

Example GEL_System("dir");

GEL_System("dir *.dat") which is equivalent to
GEL_System("dir %s", "*.dat");

GEL_System("myfunc %f %d %s", targVar, 3, "-ol"); If we assume that
targVar is a variable defined on the DSP target and that its value is 3.14, then
the final DOS command that will be executed will be: >>myfunc 3.14 3 -ol

GEL_System() Execute a DOS Command

Built-In GEL Functions

12-36

Format Specification Fields

A format specification has the following form:

%type

Unlike C, the GEL format specification contains only the percent sign and a
type character (for example %s). The type character determines whether the
associated argument is interpreted as a string, or number (as detailed below):

Character Type Output Format

d int Signed decimal integer.

u int Unsigned decimal integer.

x int Hexadecimal format.

f double
Signed value having the form
[-]dddd.dddd.

e double
Signed value having the form
[-]d.dddd e [sign]ddd.

s string
Characters printed up to the first null character. The
string passed to this format type must be a constant
string declared on the host.

Built-In GEL Functions

The General Extension Language (GEL) 12-37

Format GEL_TargetTextOut(startAddress, Page, maxLength, format,
"windowName", textColor, lineNumber, appendToEnd, changeHighlight);

Parameters startAddress: (required) first address of the block containing the preformatted
string

Page: (optional) identifies the type of memory:

Memory Type Page Parameter
Program memory 0
Data memory 1
I/O space 2

For processors such as ‘C3x and ‘C4x that do not have more than one type
of memory, use 0 for this parameter. The default value for the page number is
0. For simulated DSP targets, the I/O space parameter is not supported.

maxLength: (optional) maximum length of the block if the block is longer than
400 bytes. The formatted string on the target should be a null terminated
string. However, if a null is not encountered only 400 or maxLength bytes
(whichever is larger) of the string will be printed.

format: (optional) indicates whether the text is in packed or unpacked format
on the target:
0 - ASCII character (bytes)
1 - Packed ASCII character using big endian format - the first character is in
the most significant byte of the target.
2 - Packed ASCII character using little endian format; the first character is in
the least significant byte of the target.

windowName: (optional) name of the window where you want the output to
go. If the window is not opened, it is created using the default parameters of
the GEL_OpenWindow() GEL function (see “GEL_OpenWindow()” on
page 30).

textColor: (optional) printed color of the text
0 - Black text
1 - Blue text
2 - Red text

lineNumber: (optional) for a nonscrolling window, line number of the window
where the printing should start

GEL_TargetTextOut() Display Target Formatted String

Built-In GEL Functions

12-38

appendToEnd: (optional) flag used only if you are printing to a nonscrolling
window. If this flag is set to 1, the text is appended to the existing line.
Otherwise, the existing line is erased, and the new line is placed in the output
window.

changeHighlight: (optional) flag used only if you are printing to a nonscrolling
window and replacing a specific line. If this flag is enabled, the new text is
compared to the old text. If a change is encountered, the new text is
highlighted.

Description This function is used to print a formatted string to an output window of Code
Composer. The string must already exist on the target and must be null
terminated.

Example GEL_TargetTextOut(0x800);
GEL_TargetTextOut(0x1000, 0, 400, 1, "My Window", 1);

See Also GEL_CloseWindow, GEL_OpenWindow, GEL_TextOut

Built-In GEL Functions

The General Extension Language (GEL) 12-39

Format GEL_TextOut("Text", "windowName", textColor, lineNumber, appendToEnd,
parm1, parm2, .. parm4);

Parameters Text: (required) formatted text (including format specifiers) that is to be
printed. The number for format specifier must match the number of additional
parameters (parm1.. parm4) that are encountered.

windowName: (optional) name of the window where you want the output to
go. If the window is not opened, it will be created using the default parameters
of the GEL_OpenWindow() GEL function (see “GEL_OpenWindow()” on
page 30).

textColor: (optional) printed color of the text
0 - Black text
1 - Blue text
2 - Red text

lineNumber: (optional if the window is a nonscrolling window) this parameter
specifies the line number of the window at which the printing should start

appendToEnd: (optional) flag used only if you are printing to a nonscrolling
window. If this flag is set to1, the text is actually appended to the existing line.
Otherwise, the existing line is erased and the new line is placed in the output
window.

param1..param4: (optional) additional parameters that are substituted in text
when a format specifier is encountered. These parameters allow the user to
pass values from the target or values passed from the user to the output
window.

Format specifications always begin with a percent sign (%) and are read left
to right. When the first format specification (if any) is encountered, the value
of the first argument (parm1) is converted and printed in the output window of
Code Composer. The second format specification causes the second
argument to be converted and printed, and so on. If there are more
arguments than there are format specifications, the extra arguments are
ignored.

GEL_TextOut() Print Text to an Output Window

Built-In GEL Functions

12-40

Description This function prints a fixed string to a specified output window. This function
is ideal for printing messages.

Example GEL_TextOut("All Tests Passed\n");
GEL_TextOut("Failed Memory Test\n","Diagnostic Results", 2);
GEL_TextOut("Tests Executed: %d, Tests Passed %d ",,,,,targExe, targPass);

See Also GEL_OpenWindow, GEL_TargetTextOut, GEL_CloseWindow

Format Specification Fields

A format specification has the following form:

%type

Unlike C, the GEL format specification contains only the percent sign and a
type character (for example %s). The type character determines whether the
associated argument is interpreted as a string, or number (as detailed below):

Character Type Output Format

d int Signed decimal integer.

u int Unsigned decimal integer.

x int Hexadecimal format.

f double
Signed value having the form
[-]dddd.dddd.

e double
Signed value having the form
[-]d.dddd e [sign]ddd.

s string
Characters printed up to the first null character. The
string passed to this format type must be a constant
string declared on the host.

Built-In GEL Functions

The General Extension Language (GEL) 12-41

Format GEL_WatchAdd("expression", "label");

Parameters expression: (required) expression that is to be added to the Watch window.
This expression may contain the formatting string as specified by the Watch
window formats.

label: (optional) label used to display the watch entry

Description This function can be used to add expressions to the Watch window from the
GEL environment. See the description on The Watch Window for more
details.

Example GEL_WatchAdd("*(int *)0x1000,x", "Task Number");
GEL_WatchAdd("i");

See Also GEL_WatchDel, GEL_WatchReset

Format GEL_WatchDel("expression");

Parameter expression: (required) expression that you wish to delete from the Watch
window

Description This function removes an existing expression from the Watch window. The
expression must be exactly the same as the expression in the Watch window.

Example GEL_WatchDel("*(int *)0x1000,x");

See Also GEL_WatchAdd, GEL_WatchReset

Format GEL_WatchReset();

Parameters None

Description This function clears all expressions from the Watch window.

Example GEL_WatchReset();

See Also GEL_WatchAdd, GEL_WatchDel

GEL_WatchAdd() Add an Expression to the Watch Window

GEL_WatchDel() Delete an Existing Expression from the Watch Window

GEL_WatchReset() Clear The Watch Window

Built-In GEL Functions

12-42

Format GEL_XMDef(Map, RegAddr, Type, Start, Mask);

Parameter Map — type of memory space for extended memory mapping:

Memory Type Page Parameter
Program space 0
Data space 1

RegAddr — location of mapper register (0x1E)

Type — memory type of mapper register:

Memory Type Page Parameter
Program space 0
Data space 1

Start — beginning of mapped memory range (use 0x8000 if OVLY is 1)

Mask — bit mask representing the size of the mapper register

Description This function is used to define extended memory address ranges for the
'C548/'C549 processors.

Example GEL_XMDef(0,0x1E,1,0x8000,0x7EF);

See Also GEL_XMOn

Note: Simulator - GEL_XMDef Not Supported

This function is not supported for the simulator.

GEL_XMDef() Define Extended Memory Ranges (C548 only)

Built-In GEL Functions

The General Extension Language (GEL) 12-43

Format GEL_XMOn();

Parameter None

Description This function is used to enable extended memory mapping for the 'C548/
'C549 processors.

Example GEL_XmOn();

See Also GEL_XMDef

Note: Simulator - GELXMOn Not Supported

This function is not supported for the simulator.

GEL_XMOn() Enable Extended Memory Mapping (C548/C549 only)

12-44

A-1

Appendix A

Frequently Asked Questions

The following provides an overview of the most frequently asked questions
pertaining to the use of Code Composer.

A.1 Installation/Loading Code Composer . A–2

A.2 DSP Project Management System . A–4

A.3 General Debugging. A–8

A.4 Editor . A–9

A.5 Watch Window . A–9

A.6 General Extension Language – GEL. A–10

A.7 Graph Window . A–12

Topic Page

Installation/Loading Code Composer

A-2

A.1 Installation/Loading Code Composer

1) When I attempt to execute Code Composer for the first time, I
intermittently obtain the following error messages:

ERROR MESSAGE 1: “Can’t Initialize Target DSP
Trouble with JTAG controller
Check your Cabling and your Multiprocessing Configuration”

ERROR MESSAGE 2: “Can’t Initialize Target DSP
I/O Port = <address>”

There are a number of troubleshooting areas to consider when
encountering this error. These are listed below in the order from most to
least likely to have invoked this error message.

DSP Target I/O Settings:

a) Your DSP target has been set at an invalid I/O address. Make sure
that your DIP switch settings on your target card match the I/O
address set when running the Code Composer Setup utility.

b) A conflict may exist at the I/O address set for your target. Check that
no other hardware on your PC is using this I/O setting. If you are
running Windows 95, you can check for conflicts by selecting
START->SETTINGS->CONTROL PANEL->SYSTEM and choosing
the Device Manager tab – this will outline a layout of your system and
will indicate if any conflicts exist between your target board any other
hardware on the system.

Code Composer Setup Configuration:

a) The device driver that you set when running the Code Composer
Setup utility may be incorrect. Make sure that this driver is
appropriate for your DSP target configuration.

b) Your Multiprocessing configuration has not been set up correctly.
Please refer to the Code Composer Setup online help for details on
correctly configuring your Code Composer Multiprocessing System.

c) The Code Composer Setup utility may not reside in the same
directory as your Code Composer executable program. Please make
sure that the setup program is in the same directory as the
executable.

Installation/Loading Code Composer

Frequently Asked Questions A-3

DSP Target Setup:

a) Make sure that your DSP is not in a “Hold” or “Reset” state and is
correctly powered up.

b) Target processor pin is active. The target processor must be “ready”
for the debugger to execute. If there is a hardware problem on the
ready line then, if possible, put the processor into Microcomputer
mode, reset the system, and try bringing up the debugger again. In
Microcomputer mode all memory accesses should be on chip and
the ready signal should have no effect. Check your device user’s
guide for details.

c) The processor hold pin is active. Same issue as b).

d) The JTAG signal may not be clear enough. In order to provide
high-quality signals between the emulator and the target processor,
please check that the unbuffered distance between the emulator
header and the processor is less than 6 inches. If this distance is in
excess of 6 inches, the emulation signals should be buffered.

e) The processor does not have a clock out. Processor must be
receiving and generating the proper clocks. Check your clock in
circuit and clock mode.

f) The EMU0/1 pins must be high. The value of the EMU0/1 pins and
reset can be used to turn off device pins and/or invoke device test
modes. The user should have these pins pulled high through a
resistor in his/her target system.

2) Is Code Composer Year 2000 compliant?

There are no Year 2000 issues pertaining to the operation of the Code
Composer software. For information on Code Composer and Year 2000
conformity, please contact the Texas Instruments Year 2000 Program
Office at:

Texas Instruments
Year 2000 Program Office
6500 Chase Oaks Blvd.
M/S 8418
Plano, TX 75023
Attn: Customer Communications

Or see the following web site:

http://www.ti.com/corp/docs/year2000

Or see the TI product matrix at:

http://www.ti.com/corp/docs/year2000/dspsds.htm

DSP Project Management System

A-4

A.2 DSP Project Management System

1) When I try to invoke a BUILD or a COMPILE from within the Code
Composer environment, I obtain the following error message:

“error 1010: can't initialize loader LINEXE_LOADER [1]”

or I obtain an “Out of Memory” error message. What could be
happening?

This is most likely caused by insufficient conventional memory available
within your system. Please check how much conventional memory you
have available in your DOS shell by entering "mem" within the DOS shell.
You should have at least 590K RAM. You should also try invoking the TI
tools from the DOS shell – just enter the same command line used by
Code Composer to invoke the tools. For instance, if your source code file
is in "Mydirectory", switch to this directory and enter the command line
used by Code Composer to invoke the TI tools. You should free up some
of your conventional memory to alleviate the problem.

2) (Windows 95) When invoking a BUILD from within Code Composer,
I encounter the following error message in the Build window:

“General failure error reading drive E”

This error arises due to the interaction between 16-bit TI code generation
tools and the 32-bit Code Composer application. Adding the following to
your WIN.INI file should alleviate the situation:

[Code Composer]
BackgroundCompile = SAFE

3) (Windows 95) When invoking a BUILD from within Code Composer,
I notice that the Build window shows the code generation tools
being invoked. However, no syntactical errors are encountered (at
the compiler stage) and no executable *.out files are built. Invoking
the compiler/assembler/linker from the DOS shell generates the
executable without any problems.

This problem is symptomatic of an incompatibility between the TI 16-bit
code generation tools and the 32-bit Code Composer application. Adding
the following line to your WIN.INI file should resolve the issue:

[Code Composer]
BackgroundCompile = SAFE

DSP Project Management System

Frequently Asked Questions A-5

4) When I invoke a BUILD or COMPILE from within Code Composer,
the Build window is displayed yet it is empty. No compiler,
assembler, or linker is invoked and the window just remains empty.

This problem also arises when there is insufficient conventional memory
available. For more information, please see #1.

5) When I invoke a BUILD or a COMPILE from within the Code
Composer environment, I obtain a “bad command or filename” error
when the TI tools are invoked in the Build window.

The path set to point to the TI tools in your autoexec.bat file (Windows 95)
or your System Environment Variables (Windows NT) must be set to the
correct directory of the TI code generation tools. Please make sure this
is the case.

6) Every time I invoke the linker, I receive the following error message:

“entry point symbol _c_int100 undefined”

This error message may be appearing due to the use of linker options
other than those provided by Code Composer. These options may have
been set via environment variables in your autoexec.bat file (Windows
95) or your System Environment Variables (Windows NT), or by options
you have typed yourself into the Code Composer Build Options dialog
box. A possible solution is to remove the “-z” option from the “set
C_OPTION” line in your autoexec.bat file (Windows 95) or from the
System Environment Variables (Windows NT) and/or remove the
Assembler/Linker options you have typed yourself in the Code Composer
Build Options dialog box.

7) The options I set when using Code Composer are not used when I
build a project. For example, I have turned optimization off from the
Code Composer Build Options dialog box. When I start the compile
process, I can see that the TI compiler has been invoked with the
correct options; however, when I look at the final code, optimization
has not been turned off.

The TI code generation tools are invoked using the options that you have
specified in the Code Composer Build Options dialog box. However,
these options are overridden by options set via environment variables
such as ‘C_OPTIONS'. Therefore, if you have environment variables
defined in your autoexec.bat file (Windows 95) or as part of your System
Environment Variables (Windows NT), these options will override any
conflicting options you have selected in the Code Composer Build
Options dialog box. Therefore, it is highly recommended that you remove
the environment variables to avoid any conflicts.

DSP Project Management System

A-6

8) How do I include multiple "include" files of different pathnames as
part of my project?

To include multiple files as part of your project's "include" collection of
files (such as header files, for instance), do the following:

By following these three steps, all of the "include" files associated with
your project, whose pathnames are not necessarily equivalent to those of
the source file, will be included as part of your project.

a) select Project->Options from the main menu

b) select the “Compiler” tab

c) in the “Include Search Path” dialog box, enter the complete
pathnames of the “include” files, separated by semicolons

9) When I launch the project build process, I see the following error
message inside the Build window when the compiler is invoked:

“Can’t run cl6x – too many arguments”

There exists an 80 character limit on the number of characters that any
command line used to invoke the TI code generation tools can contain.
Therefore, the number of characters inside the Code Composer Build
Options dialog box must be limited to 80. In most cases, at the compiler
stage, the number of characters on the command line is usually taken up
by specifications of the paths to the include (header) files. To alleviate this
situation and increase the number of options that can be passed to the
command line, you may utilize environment variables to specify the
include search paths, as follows:

(Windows 95) Environment variable(s) must be set inside your
autoexec.bat file using the following syntax:

SET TEMP=<pathname>

Please note that there are no spaces between TEMP, =, and
<pathname>.

(Windows NT) Environment variable(s) must be set via the System
Environment Variables. From the Start button, select Settings-> Control
Panel->System. Enter the following information under the Environment
tab in the dialog box:

❏ add the word TEMP in the Variable field

❏ enter the complete path name of the include file in the Value field

DSP Project Management System

Frequently Asked Questions A-7

TEMP denotes an environment variable name used for this example. You
may enter any name you wish for the variable itself. "Include Search Path"
inside the Code Composer Build Options (Compiler) dialog box can
reference the environment variable by entering: %TEMP% inside the
dialog window. In case of multiple environment variables, these can be
entered in the "Include Search Path" window by entering:
%TEMP%;%TEMP1%;...;%TEMPn% (where TEMP..TEMPn are all
predefined environment variables).

10) When I initiate my project build, I can see the compiler commands
invoked in blue in the Build window, but I don't see any response
and then the linker stage can't find the "obj" files. What am I doing
wrong?

If the command line invoking the compiler/assembler/linker tools is
greater than 80 characters in length, this situation occurs. To alleviate the
problem, remove the "include" directories from the Build Options
(Compiler) dialog box and use the environment variables, such as
"C_OPTIONS", to define the Compiler options. For more information, see
#9.

General Debugging

A-8

A.3 General Debugging

1) When I set a breakpoint at a valid C-line in my Edit window, I get an
error message when I begin executing my program:

“Unable to move breakpoint to a valid line at source line:
<filename> at line xxx. It has been disabled”

It may be possible that:

a) You have not loaded the program onto the DSP. The Code Composer
debugger needs you to load the program onto your DSP target to get
all the symbol information. This symbol information tells Code
Composer the exact DSP address for each C source line.

b) No valid assembly line exists for the specified source line.

NOTE: If you are having trouble setting breakpoints, the best way to figure
out what is wrong is to turn the Mixed C/Ass option on (this is under the
VIEW menu item). This display will show you all the C-lines as well as the
associated DSP instructions. If you do not see any assembly lines in your
file, then no symbol information exists for this C-file.

2) I am working on a ‘C5x target. How do I select a certain page (i.e.,
data, program, or file I/O) in the watch window or in a GEL function?

You can use the ‘@’ operator to specify the page you are interested in.
The ‘@’ should be followed by one of the following keywords: ‘data’ prog’
or ‘io’. For example, to zero out a location in the program memory using
a GEL file use the statement *0x1000@prog = 0;

3) When I attempt to set a breakpoint inside my assembly source file
(*.ASM), I encounter the following error message:

“Unable to move breakpoint to a valid line at source line:
<filename> at line xxx. It has been disabled”

This error message indicates that Code Composer is unable to associate
symbolic executable information (inside the *.OUT file) with the actual
assembly source file. To be able to make this association,
assembly-source level debugging support must be available with the
version of the TI assembler you are using. Currently, assembly-source
level debugging is only available with TI ‘C5x/’C2xx assembler version
6.63 (or higher) – to set this option, simply click on “Enable Source Level
Debugging” inside the PROJECT-OPTIONS Assembler dialog window.

Editor

Frequently Asked Questions A-9

A.4 Editor

1) How do I shift a whole paragraph one Tab position in the editor?

Use the mouse to select the paragraph of interest. Then use the Tab (or
shift-Tab) to shift the entire paragraph one tab position.

A.5 Watch Window

1) How do I select the display option of a variable in the Watch
window?

You can select different display options by following the expression with
a ‘,D’; where D can be any valid display option. Refer to the online help
under Watch window for more details.

2) (‘C3x and ‘C4x only) How do I observe the Precision Extended
Registers in a floating point format?

In order to observe these registers in a floating-point number format, use
the “Edit Variable” dialog using the predefined symbols “F0” to “F7” for the
registers “R0” to “R7” (for ‘C3x) and “F0” to “F11” for the registers “R0” to
“R11” (for ‘C4x). To view floating point registers, add these symbols to the
Watch Window.

If operating in a Windows 95/Windows NT operating environment, you
may also click with the right mouse button on the CPU registers window
to enable you to change the display format of the CPU registers.

General Extension Language – GEL

A-10

A.6 General Extension Language – GEL

1) Why are quotation marks needed around some symbols in some
places and not other. For example, WatchAdd requires quotes and
BreakPtAdd does not?

Quotes are placed around an expression or string that is NOT to be
parsed or evaluated before it is executed. Whenever you type in an
expression, it is parsed and executed. The same is true if you call a GEL
function (including built-in functions). If you pass an expression as an
argument to a GEL function, it will be evaluated and the final result will be
passed to the GEL function. For example, in the following call to the
built-in function: GEL_BreakPtAdd(StartAddress + 0x100), the
expression ‘StartAddress + 0x100’ is evaluated and then the result is
passed to the built-in function.

For the built-in function GEL_WatchAdd(), we do not want to pass an
expression as an argument. We want to pass a STRING that is added to
the Watch window. It is the Watch window that is responsible for
evaluating the expression contained in the string.

2) Can I execute a GEL function each time I start Code Composer?

Yes. You can automatically load a GEL function upon startup if you
specify a GEL filename at the end of the command line which starts up
Code Composer. You must realize that this action is only LOADING the
GEL file into Code Composer’s memory so that you can access the GEL
functions within the file. If this file contains a GEL function named
“StartUp()”, Code Composer will execute this function. Therefore, you
can place your initialization tasks within this function.

3) How can I execute a GEL function every time the code hits a
breakpoint?

A good way to execute a GEL function at a breakpoint, is to set a
CONDITIONAL breakpoint. Enter the function you wish to call as the
conditional expression. If you just want to call the GEL function and then
continue to execute, have the GEL function return a FALSE (i.e., 0);
otherwise, return a TRUE (i.e., 1).

General Extension Language – GEL

Frequently Asked Questions A-11

4) How do I automatically load up a GEL file and a Workspace every
time I invoke Code Composer?

Within the Code Composer environment, load up your GEL files and set
up your debugging environment. Then save the set up as a Workspace
and place this workspace name (with the .wks extension) on the Code
Composer executable command line (see Section 2.15, Saving and
Restoring Your Workspace). The same procedure applies to a
multiprocessor situation (see Section 3.6, Auto-Executing GEL
Functions).

A-12

A.7 Graph Window

1) Can I prevent graphs from updating at least when I am stepping
through code?

Yes. What you have to do is connect the graph to a Probe Point. If a graph
is not connected to any Probe Point (which is the case when you first
open a graph window), it is updated each time you single-step or run to a
breakpoint. However, if you connect it to a Probe Point it will only be
updated when the execution of the code reaches the Probe Point.

2) I would like to trace the values of a variable in the Graph window. Is
this feature supported in Code Composer?

Yes. The Graph window is flexible enough to allow you to trace values of
a variable. These are the steps you should follow:

a) Open a Graph window with the following parameters:

Starting Address – If your variable of interest is ‘ErrorPower’, then
enter ‘&ErrorPower’ for this location. The most common mistake here
is when the user does not enter the ‘&’ before the variable. Note that
any valid ‘C’ expression can be entered in this field and the result
should give you the address of the variable that you are interested in.

Buffer Size – Enter ‘1’.

Display Size – Enter the number of samples you want the history for.

Left Shift Display – Have this option selected.

b) Connect the Graph window to a Probe Point. When you are using the
left shift display option, it is recommended that you attach the graph
to a Probe Point, so that the Graph window does not update when
you don’t want it to.

The graphical display will now graph the values of the variable.

B-1

Appendix B

Glossary

active window: The window that is currently selected for editing, moving,
resizing, closing, etc.

Animate: The program executes until a breakpoint is encountered. When a
breakpoint is encountered, execution halts and the debugger updates all
windows that are not connected to any Probe Point(s) . Program execution
resumes until the next breakpoint.

animation speed: Defines the minimum time between breakpoints . When
executing a program using the animate command, execution will not resume
until the minimum time has expired since the previous breakpoint.

autoload: Load files automatically on startup.

bookmark: Marks a key location within a source file.

breakpoint: Defines a point at which program execution will be halted. While
execution is stopped, you can analyze the state of your program.

byte: A sequence of eight adjacent bits operated upon as a unit.

A

B

B-2

Call Stack window: Displays the series of function calls that led to the
current location in the program that you are debugging.

Common Object File Format (COFF): A binary object file format that
promotes modular programming by supporting the concept of sections . All
COFF sections are independently relocatable in memory space; you can
place any section into any allocated block of target memory.

Dis-Assembly window: Displays disassembled instructions and symbolic
information needed for debugging.

disassembly: Assembly language code formed from the reverse-assembly
of the contents of target memory.

dockable windows: Many windows in Code Composer are dockable. You
can move and align a dockable window to any portion of the Code Composer
main window. Disabling the Allow Docking property lets you remove the
window from the general Code Composer parent window and place it
anywhere on the desktop.

emulator: A hardware development system that emulates target processor
operation.

entry point: A point in target memory where execution begins.

C

D

E

Glossary B-3

General Extension Language (GEL): An interpretive language that enables
you to write functions to configure your Code Composer environment and
access the target processor.

Graph window: Enables you to analyze data that is produced by your DSP
application programs.

Memory window: Displays the contents of target memory starting at a
specified address.

memory map: A map of target system memory space, which is partitioned
into functional blocks. The memory map tells the debugger which areas of
memory can and cannot be accessed.

multiprocessing: Code Composer supports concurrent debugging sessions
on multiple processors (emulator only).

object file: A file that has been assembled or linked and contains
machine-language object code.

object library: An archive library made up of individual object files .

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

G

M

O

B-4

Probe Point: Defines when a window will be updated during program
execution. When a Probe Point is connected to a window, the window is
updated only when the Probe Point is reached. (The window is not updated
when a breakpoint is encountered.) After the window is updated, program
execution resumes.

profile point: Similar to a breakpoint but instead of halting execution, profile
points collect statistics on events that have occurred since the previous profile
point was encountered.

project: A framework for managing the development of your DSP application
programs.

project environment: An integrated collection of tools that speed the
development of your DSP application programs. Your application program is
developed as a project within the Code Composer environment. All
information pertaining to a project is stored in a project file .

project file: A single file that stores information for a particular project , i.e.,
the source files , object files , object libraries , software tool options ,
dependencies, etc. needed to build a DSP application program or library.

Register window: Enables you to view and edit the contents of CPU or
peripheral registers.

P

R

Glossary B-5

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the target memory map.

simulator: A software development system that simulates target processor
operation.

single stepping: The program is executed statement by statement, allowing
you to see the effects of each statement.

source file: A file that contains C or assembly language code that will be
compiled or assembled to form an object file.

symbol: A string of alphanumeric characters representing an address or a
value.

symbol table: A portion of a COFF object file that contains information about
the symbols that are defined and used by the file.

symbolic information: Symbols and strings of alphanumeric characters that
represent addresses or values on the DSP target.

target system: The system on which the object code you have developed is
executed.

variable: A symbol representing a quantity that can assume any of a set of
values.

Watch window: Enables you to view and edit variables and expressions.

workspace: Your Code Composer working environment. A workspace can
be saved. Previously saved workspaces can be reloaded.

S

T

V

W

B-6

Index-1

This is a draft version printed from file: ccIX.doc on 9/21/99

Index

A
ABORT any expressions 12-18
Acquisition Buffer Size, graph option 6-14, 6-21,

6-28
active window B-1
adding

breakpoints 4-2
Probe Points 4-8

Animate 2-17, B-1
animation speed 2-18, B-1
autoexecuting GEL functions 12-16
autoload 3-7
Autoscale, graph option 6-17
Axes Display, graph option 6-17, 6-23, 6-31

B
basic concepts 2-1
bookmarks

using 9-19
breakpoints

adding/deleting 4-2
block repeat instruction 4-2
conditional breakpoints 4-6
defined 4-2, B-1
delayed branch 4-2
enabling/disabling 4-4
global breakpoints 3-9
hardware breakpoints 4-7

BreakPtReset(), GEL function 12-21
build all 10-8
byte B-1
Byte Packing, graph option 6-37

C
C expression, input fields 2-10
C source and assembly code

viewing 2-5
call stack

displaying 2-22
changing color highlights 2-4
CLK, profiling variables 11-2
closing projects 10-2
Code Composer Studio Setup 1-3

Code Composer Studio Tutorial 1-4
Code Composer Studio, installing 1-3
COFF file

loading 2-13
reloading 2-13

COFF, defined B-2
collapsing variables

Watch window 8-3
Color Space Operations, graph option 6-34
column editing 9-12
command line

executing GEL functions 2-21
compile file 10-8
concepts

basic features 2-1
conditional breakpoints 4-6
conditional Probe Points 4-12
configuring system files 1-3
connecting Probe Points 4-9
Constellation diagram 6-19
Constellation options

Acquisition Buffer Size 6-21
Axes Display 6-23
Constellation Points 6-22
Cursor Mode 6-24
Display Type 6-20
DSP Data Type 6-22
Graph Title 6-20
Grid Style 6-24
Index Increment 6-22
Interleaved Data Sources 6-20
Maximum X-Value 6-23
Maximum Y-Value 6-23
Minimum X-Value 6-23
Minimum Y-Value 6-23
Q-Value 6-23
Status Bar Display 6-24
Symbol Size 6-23

Constellation Points, graph option 6-22
context-sensitive menus 2-2
controlling file I/O 5-5
copying data values 2-19
copying text 9-12
CPU registers

editing 2-12
creating projects 10-2
Cursor Mode, graph option 6-18, 6-24, 6-32, 6-38
cutting text 9-12

Index-2

 Index

D
data

copying 2-19
data file

formats 5-5
loading 5-7
storing 5-7

Data Plot Style, graph option 6-18
DC Value, graph option 6-17
define, GEL preprocessing statement 12-9
deleting

breakpoints 4-2
Probe Points 4-8
text 9-12

device drivers, setup 1-3
dialog, GEL keyword 12-12
disable

Probe Points 4-10
Dis-Assembly options 2-4
disassembly options 2-4
Dis-Assembly window

breakpoints 2-4
changing start address 2-3
opening multiple windows 2-3
Probe Points 2-4
profile points 2-4
using 2-3

disassembly, defined B-2
Display Data Size, graph option 6-14
display formats

setting 2-7
Watch window 8-5

Display Length, graph option 6-29
Display Peak and Hold, graph option 6-16
Display Type, graph option 6-3, 6-20, 6-26
dockable windows 2-2
DSP Data Type, graph option 6-15, 6-22, 6-30

E
Edit toolbar 9-4
editing

CPU registers 2-12
editing a memory location 2-9
editing bookmarks 9-19
editing columns 9-12
editing variables 2-20

Watch window 8-4
editor 9-1

creating files 9-9
cutting, copying, pasting 9-12
deleting 9-12
duplicating your view 9-10

editor (continued)
Edit toolbar 9-4
find and replace 9-15
GoTo source line 9-13
keyboard shortcuts 9-5
opening files 9-10
redo 9-13
setting properties 9-18
Standard toolbar 9-3
tabbing 9-13
undo 9-13
using 9-2

emulator B-2
enable

Probe Points 4-10
entry point B-2
environment

project 10-1
expanding variables

Watch window 8-3
expression queue

viewing 12-18
Eye diagram 6-25

using 6-26
Eye diagram options

Acquisition Buffer Size 6-28
Axes Display 6-31
Cursor Mode 6-32
Display Length 6-29
Display Type 6-26
DSP Data Type 6-30
Graph Title 6-26
Grid Style 6-32
Index Increment 6-28
Maximum Y-Value 6-31
Minimum Interval Between Triggers 6-29
Persistence Size 6-29
Pre-Trigger 6-30
Q-Value 6-31
Sampling Rate 6-31
Status Bar Display 6-32
Time Display Unit 6-32
Trigger Level 6-31
Trigger Source 6-27

F
file

opening 9-10
printing 9-11
saving 9-10

file I/O 5-2
controls 5-5

filling memory locations 2-20

Index-3

Index

Find/Replace Properties 9-15
finding and replacing text 9-16
finding text 9-15, 9-17
fonts

changing 9-14
format

data file 5-5
Frequently Asked Questions A-1
functions, GEL 12-3

G
GEL commands

broadcasting 3-6
GEL functions

auto-executing 3-7
GEL, General Extension Language 12-1
GEL_Animate(), GEL function 12-20
GEL_BreakPtAdd(), GEL function 12-20
GEL_BreakPtDel(), GEL function 12-21
GEL_CloseWindow(), GEL Function 12-21
GEL_Exit(), GEL function 12-22
GEL_Go(), GEL function 12-22
GEL_Halt(), GEL function 12-23
GEL_Load(), GEL function 12-23
GEL_MapAdd(), GEL function 12-24
GEL_MapDelete(), GEL function 12-25
GEL_MapOff(), GEL function 12-26
GEL_MapOn(), GEL function 12-26
GEL_MapReset(), GEL function 12-26
GEL_MemoryFill(), GEL function 12-27
GEL_MemoryLoad(), GEL function 12-28
GEL_MemorySave(), GEL function 12-29
GEL_OpenWindow(), GEL function 12-30
GEL_PatchAssembly(), GEL function 12-31
GEL_ProjectBuild(), GEL function 12-31
GEL_ProjectLoad(), GEL function 12-32
GEL_ProjectRebuildAll(), GEL function 12-32
GEL_Reset(), GEL function 12-32
GEL_Restart(), GEL function 12-33
GEL_Run(), GEL function 12-33
GEL_RunF(), GEL function 12-34
GEL_SymbolLoad(), GEL function 12-34
GEL_System(), GEL function 12-35
GEL_TargetTextOut(), GEL function 12-37
GEL_TextOut(), GEL function 12-39
GEL_WatchAdd(), GEL function 12-41
GEL_WatchDel(), GEL function 12-41
GEL_WatchReset(), GEL function 12-41
GEL_XMDef(), GEL function 12-42
GEL_XMOn(), GEL function 12-43
General Extension Language (GEL)

accessing the output window 12-15
adding GEL functions to the menu bar 12-11

General Extension Language (GEL) (continued)
autoexecuting upon startup 12-16
built-in GEL functions 12-19
calling a function 12-7
defining functions 12-3
loading/unloading GEL functions 12-10
statements

comments 12-8
if-else 12-7
preprocessing statements 12-9
return 12-7
while 12-8

using 12-1
using keywords 12-11
viewing expression queue 12-18

global breakpoints 3-9
GoTo source line 9-13
Graph Title, graph option 6-13, 6-20, 6-26, 6-34
Graph window 6-1

Constellation diagram 6-19
Constellation options

Acquisition Buffer Size 6-21
Axes Display 6-23
Constellation Points 6-22
Cursor Mode 6-24
Display Type 6-20
DSP Data Type 6-22
Graph Title 6-20
Grid Style 6-24
Index Increment 6-22
Interleaved Data Sources 6-20
Maximum X-Value 6-23
Maximum Y-Value 6-23
Minimum X-Value 6-23
Minimum Y-Value 6-23
Q-Value 6-23
Status Bar Display 6-24
Symbol Size 6-23

Eye diagram 6-25
using 6-26

Eye diagram options
Acquisition Buffer Size 6-28
Axes Display 6-31
Cursor Mode 6-32
Display Length 6-29
Display Type 6-26
DSP Data Type 6-30
Graph Title 6-26
Grid Style 6-32
Index Increment 6-28
Maximum Y-Value 6-31
Minimum Interval Between Triggers 6-29

Index-4

 Index

Graph window, Eye diagram options (continued)
Persistence Size 6-29
Pre-Trigger 6-30
Q-Value 6-31
Sampling Rate 6-31
Status Bar Display 6-32
Time Display Unit 6-32
Trigger Level 6-31
Trigger Source 6-27

Image graph 6-33
Image options

Byte Packing 6-37
Color Space Operations 6-34
Cursor Mode 6-38
Error Diffusion 6-38
Graph Title 6-34
Image Origin 6-37
Image Row 4-Byte Aligned 6-37
Lines Per Display 6-37
Pixels Per Line 6-37
Status Bar Display 6-38
Uniform Quantization to 256 Colors 6-38

Time/Frequency graph 6-2
Time/Frequency options

Acquisition Buffer Size 6-14
Autoscale 6-17
Axes Display 6-17
Cursor Mode 6-18
Data Page 6-13
Data Plot Style 6-18
DC Value 6-17
Display Data Size 6-14
Display Peak and Hold 6-16
Display Type 6-3
DSP Data Type 6-15
Graph Title 6-13
Grid Style 6-18
Left-Shifted Data Display 6-16
Magnitude Display Scale 6-17
Plot Data From 6-16
Q-Value 6-15
Sampling Rate 6-15
Start Address 6-13
Status Bar Display 6-17

Graph Window - Time/Frequency Options
Data Page 6-21, 6-28, 6-36

Grid Style, graph option 6-18, 6-24, 6-32
grouping processors 3-3

H
Halt 2-17
hardware breakpoints 4-7
hardware Probe Points 4-13
hardware profile points 11-9
help

using online help 1-4
hotmenu, GEL keyword 12-11

I
Image graph 6-33
Image options

Byte Packing 6-37
Color Space Operations 6-34
Cursor Mode 6-38
Error Diffusion 6-38
Graph Title 6-34
Image Origin 6-37
Image Row 4-Byte Aligned 6-37
Lines Per Display 6-37
Pixels Per Line 6-37
Status Bar Display 6-38
Uniform Quantization to 256 Colors 6-38

Image Origin, graph option 6-37
incremental build 10-8
Index Increment, graph option 6-22, 6-28
input fields

C expression 2-10
input/output 5-2
installing Code Composer Studio 1-3
Interleaved Data Sources, graph option 6-20

K
keyboard shortcuts 9-5

customizing 9-8

L
Left-Shifted Data Display, graph option 6-16
Lines Per Display, graph option 6-37
loading COFF file 2-13
loading data file 5-7
loading kernel 2-19
loading symbol information 2-13
loading workspace 2-25
local variables 2-22
Locked Step 3-5
Locked Step-Out 3-5
Locked Step-Over 3-5

Index-5

Index

M
Magnitude Display Scale, graph option 6-17
Maximum X-Value, graph option 6-23
Maximum Y-Value, graph option 6-23, 6-31
memory

copying 2-19
filling 2-20

memory map
accessing 7-2
define using GEL 7-5
defined 7-1, B-3
defining 7-3

Memory window
setting display formats 2-7
setting window options 2-7
using 2-6

memory window
editing 2-9

menus
context-sensitive 2-2

Minimum Interval Between Triggers, graph
option 6-29

Minimum X-Value, graph option 6-23
Minimum Y-Value, graph option 6-23
mixed C source and assembly code 2-5
multiple operations, single stepping 2-16
multiple processors

broadcast commands 3-5
GEL commands 3-6
grouping 3-3
opening parent windows 3-2
synchronizing 3-2

multiprocessing 3-1
auto-executing GEL functions 3-7
broadcasting GEL commands 3-6
broadcasting synchronous commands 3-5
global breakpoints 3-9
grouping processors 3-3

O
object file B-3
object library B-3
online help

using 1-4
opening projects 10-2
options B-3
output window

accessing from GEL 12-15

P
pages

@ operator 2-20
Parallel Debug Manager 3-2

autoexecuting GEL functions 3-7
broadcast commands 3-5
broadcast GEL commands 3-6
grouping processors 3-3
opening parent windows 3-2

pasting text 9-12
Persistence Size, graph option 6-29
Pixels Per Line, graph option 6-37
Plot Data From, graph option 6-16
Pre-Trigger, graph option 6-30
printing files 9-11
Probe Points 4-8

adding/deleting 4-8
conditional Probe Points 4-12
connecting 4-9
defined 4-8
enabling/disabling 4-10
hardware 4-13
tracing memory access 4-13

probe points
defined B-4

processor pipeline 4-2
profile clock

accuracy 11-4
setup 11-3
using 11-2

profile points
defined B-4
deleting 11-6
enable/disable 11-7
hardware 11-9
setting 11-6
strategies 11-12
using 11-6

profiler
viewing statistics 11-10

profiling
improving accuracy 11-4
setup profile clock 11-3
using profile clock 11-2

profiling code execution 11-1
project

adding files 10-4
build commands 10-8
build options 10-8
closing 10-2
creating 10-2
environment 10-1, B-4
file dependencies 10-6

Index-6

 Index

project (continued)
opening 10-2
scanning dependencies 10-6

project file B-4

Q
QuickWatch 8-6

using 8-6
Q-Value, graph option 6-15, 6-23, 6-31

R
redo 9-13
refreshing windows 2-22
registers

viewing 2-12
reloading COFF file 2-13
requirements

operating system 1-2
resetting DSP 2-19
resetting the target 2-19
restarting program 2-19
Run 2-17
Run Free 2-17
Run to Cursor 2-15

S
Sampling Rate, graph option 6-15, 6-31
saving files 9-10
section B-5
setting breakpoints 4-2
setting Find/Replace properties 9-15
setup 1-3
shortcuts 9-5
simulator B-5
single stepping 2-15, B-5

invoking multiple operations 2-16
slider, GEL keyword 12-13
source file B-5
Standard toolbar 9-3
Start Address, graph option 6-13
statistics

profiling 11-10
Status Bar Display, graph option 6-17, 6-24, 6-32,

6-38
StepInto 2-15
StepOut 2-15
StepOver 2-15

stop build 10-8
storing

data file 5-7
streaming data 5-2
symbol B-5
Symbol Size, graph option 6-23
symbol table B-5
symbolic information B-5
synchronizing multiple processors 3-2
Synchronous Animation 3-5
Synchronous Halt 3-5
Synchronous Run 3-5
system requirements 1-2

T
tabbing multiple lines 9-13
target board

configuring 1-3
target system B-5
text

finding 9-15, 9-17
finding and replacing 9-16

Time Display Unit, graph option 6-32
Time/Frequency graph 6-2
Time/Frequency options

Acquisition Buffer Size 6-14
Autoscale 6-17
Axes Display 6-17
Cursor Mode 6-18
Data Plot Style 6-18
DC Value 6-17
Display Data Size 6-14
Display Peak and Hold 6-16
Display Type 6-3
DSP Data Type 6-15
Graph Title 6-13
Grid Style 6-18
Left-Shifted Data Display 6-16
Magnitude Display Scale 6-17
Plot Data From 6-16
Q-Value 6-15
Sampling Rate 6-15
Start Address 6-13
Status Bar Display 6-17

toggle
breakpoints 4-2
Probe Points 4-9

tracing memory access 4-13
Trigger Level, graph option 6-31
Trigger Source, graph option 6-27
troubleshooting

FAQ A-1

Index-7

Index

U
undo 9-13
Uniform Quantization to 256 Colors, graph

option 6-38

V
variables B-5

editing 2-20
local 2-22

viewing mixed source and assembly code 2-5
viewing registers 2-12

W
Watch window

adding/deleting expressions 8-2
defined 8-1

Watch window (continued)
display formats 8-5
editing variables 8-4
expanding/collapsing variables 8-3
QuickWatch 8-6

windows
Dis-Assembly 2-3
dockable 2-2
Graph 6-1
Memory window 2-6
parent windows for multiple processors 3-2
Project view 10-2
refresh 2-22
Watch 8-1

workspace B-5
autoload 2-23, 2-25
default 2-23, 2-25
loading 2-25
restore 2-23
save 2-23

Index-8

	Read This First
	Contents
	Setting Up Code Composer
	1.1 System Requirements
	1.2 Installing Code Composer
	1.3 Setting Up Code Composer
	1.4 Getting Started with Code Composer
	1.5 Using Online Help

	The Basics of Code Composer
	2.1 Using Code Composer Windows and Toolbars
	2.1.1 Context-Sensitive Menus

	2.2 Using the Dis-Assembly Window
	2.2.1 Opening More Than One Dis-Assembly Window
	2.2.2 Changing the Start Address
	2.2.3 Managing Breakpoints, Probe Points, and Profile Points from the Dis-Assembly Window
	2.2.4 Patch Assembly
	2.2.5 Changing Color Highlights
	2.2.6 Setting Dis-Assembly Style Options
	2.2.7 Viewing Mixed C Source and Assembly Code

	2.3 Using the Memory Window
	2.3.1 Setting Memory Window Options
	2.3.2 Editing a Memory Location
	2.3.3 Patch Assembly
	2.3.4 C Expression Input Fields

	2.4 CPU Registers
	2.4.1 Viewing Registers
	2.4.2 Editing Registers

	2.5 Loading a COFF File
	2.5.1 Loading Symbol Information Only
	2.5.2 Reloading a COFF File
	2.5.3 Setting Program Load Options

	2.6 Single Stepping
	2.6.1 Multiple Stepping Operations

	2.7 Run, Halt, Animate, Run Free
	2.7.1 Setting Animation Speed

	2.8 Resetting Your Target Processor
	2.9 Copying Data Values
	2.10 Filling Memory Locations
	2.11 Editing Variables
	2.12 Editing the Command Line
	2.13 Refreshing Windows
	2.14 Viewing the Call Stack
	2.14.1 Observing Local Variables

	2.15 Saving and Restoring Your Workspace
	2.15.1 Automatically Loading Your Workspace
	2.15.2 The Default Workspace

	Multiprocessing With Code Composer
	3.1 The Parallel Debug Manager
	3.2 Opening an Individual Parent Window
	3.3 Grouping Processors
	3.4 Multiprocessor Broadcast Commands
	3.5 Broadcasting GEL Commands
	3.6 Auto-Executing GEL Functions
	3.7 Global Breakpoints

	Breakpoints and Probe Points
	4.1 Breakpoints
	4.1.1 Designer Notes (Kernel-Based Code Composer Debugger)
	4.1.2 Adding and Deleting Breakpoints
	4.1.3 Enabling and Disabling Breakpoints

	4.2 Conditional Breakpoints
	4.3 Hardware Breakpoints
	4.4 Probe Points
	4.4.1 Adding and Deleting Probe Points
	4.4.2 Connecting Probe Points
	4.4.3 Enabling and Disabling Probe Points

	4.5 Conditional Probe Points
	4.6 Hardware Probe Points

	Using the File Input/Output Capabilities
	5.1 File Input/Output
	5.1.1 File I/O Controls
	5.1.2 Data File Formats

	5.2 Loading a Data File
	5.3 Storing a Data File

	The Graph Window
	6.1 Time/Frequency
	6.1.1 How the Time/Frequency Graph Works
	6.1.2 Display Type
	6.1.3 Graph Title
	6.1.4 Data Page
	6.1.5 Start Address
	6.1.6 Acquisition Buffer Size
	6.1.7 Display Data Size
	6.1.8 DSP Data Type
	6.1.9 Q-Value
	6.1.10 Sampling Rate (Hz)
	6.1.11 Plot Data From
	6.1.12 Left-Shifted Data Display
	6.1.13 Display Peak and Hold
	6.1.14 Autoscale
	6.1.15 DC Value
	6.1.16 Axes Display
	6.1.17 Status Bar Display
	6.1.18 Magnitude Display Scale
	6.1.19 Data Plot Style
	6.1.20 Grid Style
	6.1.21 Cursor Mode

	6.2 Constellation Diagram
	6.2.1 How the Constellation Diagram Works
	6.2.2 Display Type
	6.2.3 Graph Title
	6.2.4 Interleaved Data Sources
	6.2.5 Data Page
	6.2.6 Acquisition Buffer Size
	6.2.7 Index Increment
	6.2.8 Constellation Points
	6.2.9 DSP Data Type
	6.2.10 Q-Value
	6.2.11 Minimum X-Value
	6.2.12 Maximum X-Value
	6.2.13 Minimum Y-Value
	6.2.14 Maximum Y-Value
	6.2.15 Symbol Size
	6.2.16 Axes Display
	6.2.17 Status Bar Display
	6.2.18 Grid Style
	6.2.19 Cursor Mode

	6.3 Eye Diagram
	6.3.1 How the Eye Diagram Works
	6.3.2 Display Type
	6.3.3 Graph Title
	6.3.4 Trigger Source
	6.3.5 Data Page
	6.3.6 Acquisition Buffer Size
	6.3.7 Index Increment
	6.3.8 Persistence Size
	6.3.9 Display Length
	6.3.10 Minimum Interval Between Triggers
	6.3.11 Pre-Trigger (in samples)
	6.3.12 DSP Data Type
	6.3.13 Q-Value
	6.3.14 Sampling Rate
	6.3.15 Trigger Level
	6.3.16 Maximum Y-Value
	6.3.17 Axes Display
	6.3.18 Time Display Unit
	6.3.19 Status Bar Display
	6.3.20 Grid Style
	6.3.21 Cursor Mode

	6.4 Image
	6.4.1 How the Image Graph Works
	6.4.2 Graph Title
	6.4.3 Color Space Operations
	6.4.4 Data Page
	6.4.5 Lines Per Display
	6.4.6 Pixels Per Line
	6.4.7 Byte Packing to Fill 32 Bits
	6.4.8 Image Origin
	6.4.9 Uniform Quantization to 256 Colors
	6.4.10 Status Bar Display
	6.4.11 Cursor Mode

	The Memory Map
	7.1 Accessing Memory Maps
	7.2 Defining the Memory Map
	7.3 Using GEL to Define Your Memory Map

	Using the Watch Window
	8.1 Adding and Deleting Expressions in the Watch Window
	8.1.1 Expanding and Collapsing Watch Variables

	8.2 Editing Variables in the Watch Window
	8.3 Watch Window Display Formats
	8.4 QuickWatch

	The Integrated Editor
	9.1 Overview of Features
	9.1.1 Standard Toolbar
	9.1.2 Edit Toolbar

	9.2 Keyboard Shortcuts
	9.2.1 Customizing Keyboard Shortcuts

	9.3 File Manipulation
	9.3.1 Creating a New File
	9.3.2 Opening a File
	9.3.3 Duplicating File Views
	9.3.4 Saving Files
	9.3.5 Printing Files
	9.3.6 Cutting, Copying, and Pasting Text
	9.3.7 Deleting Text
	9.3.8 Editing Columns
	9.3.9 Undo/Redo Actions
	9.3.10 Tabbing Multiple Lines
	9.3.11 Go To Source Line
	9.3.12 Changing Fonts

	9.4 Finding and Replacing Text
	9.4.1 Finding Text in the Current File
	9.4.2 Setting Find/Replace Properties
	9.4.3 Finding and Replacing Text
	9.4.4 Finding Text in Multiple Files

	9.5 Setting Editor Properties
	9.6 Using Bookmarks
	9.6.1 Managing Your Bookmarks
	9.6.2 Editing Bookmark Properties

	The Project Environment
	10.1 Creating, Opening, and Closing Projects
	10.2 Adding Files to the Project
	10.3 Scanning Dependencies
	10.4 Project Environment Build Options
	10.5 Project Build Commands

	Profiling Code Execution
	11.1 Profile Clock
	11.1.1 Profile Clock Setup
	11.1.2 Profile Clock Accuracy

	11.2 Profile Points
	11.2.1 Enabling and Disabling Profile Points

	11.3 Hardware Profile Points
	11.4 Viewing Statistics
	11.5 Divide And Conquer Using Profile Points

	The General Extension Language (GEL)
	12.1 GEL Grammar
	12.2 GEL Function Definition
	12.3 GEL Function Parameters
	12.4 Calling GEL Functions and Statements
	12.4.1 GEL Return Statement
	12.4.2 GEL If-Else Statement
	12.4.3 GEL While Statement
	12.4.4 GEL Comments
	12.4.5 GEL Preprocessing Statements

	12.5 Loading/Unloading GEL Functions
	12.6 Adding GEL Functions to the GEL Menu Using Keywords
	12.6.1 The hotmenu Keyword
	12.6.2 The dialog Keyword
	12.6.3 The slider Keyword

	12.7 Accessing the Output Window
	12.8 Autoexecuting GEL Functions Upon Startup
	12.9 Viewing the Expression Queue
	12.10 Built-In GEL Functions

	Frequently Asked Questions
	A.1 Installation/Loading Code Composer
	A.2 DSP Project Management System
	A.3 General Debugging
	A.4 Editor
	A.5 Watch Window
	A.6 General Extension Language – GEL
	A.7 Graph Window

	Glossary
	Index

